v / vlib / builtin
Raw file | 1017 loc (950 sloc) | 28.74 KB | Latest commit hash fc5826b7c
1// Copyright (c) 2019-2023 Alexander Medvednikov. All rights reserved.
2// Use of this source code is governed by an MIT license
3// that can be found in the LICENSE file.
4module builtin
5
6import strings
7
8// array is a struct, used for denoting all array types in V.
9// `.data` is a void pointer to the backing heap memory block,
10// which avoids using generics and thus without generating extra
11// code for every type.
12pub struct array {
13pub mut:
14 data voidptr
15 offset int // in bytes (should be `usize`), to avoid copying data while making slices, unless it starts changing
16 len int // length of the array in elements.
17 cap int // capacity of the array in elements.
18 flags ArrayFlags
19pub:
20 element_size int // size in bytes of one element in the array.
21}
22
23[flag]
24pub enum ArrayFlags {
25 noslices // when <<, `.noslices` will free the old data block immediately (you have to be sure, that there are *no slices* to that specific array). TODO: integrate with reference counting/compiler support for the static cases.
26 noshrink // when `.noslices` and `.noshrink` are *both set*, .delete(x) will NOT allocate new memory and free the old. It will just move the elements in place, and adjust .len.
27 nogrow // the array will never be allowed to grow past `.cap`. set `.nogrow` and `.noshrink` for a truly fixed heap array
28 nofree // `.data` will never be freed
29}
30
31// Internal function, used by V (`nums := []int`)
32fn __new_array(mylen int, cap int, elm_size int) array {
33 cap_ := if cap < mylen { mylen } else { cap }
34 arr := array{
35 element_size: elm_size
36 data: vcalloc(u64(cap_) * u64(elm_size))
37 len: mylen
38 cap: cap_
39 }
40 return arr
41}
42
43fn __new_array_with_default(mylen int, cap int, elm_size int, val voidptr) array {
44 cap_ := if cap < mylen { mylen } else { cap }
45 mut arr := array{
46 element_size: elm_size
47 len: mylen
48 cap: cap_
49 }
50 // x := []EmptyStruct{cap:5} ; for clang/gcc with -gc none,
51 // -> sizeof(EmptyStruct) == 0 -> elm_size == 0
52 // -> total_size == 0 -> malloc(0) -> panic;
53 // to avoid it, just allocate a single byte
54 total_size := u64(cap_) * u64(elm_size)
55 if cap_ > 0 && mylen == 0 {
56 arr.data = unsafe { malloc(__at_least_one(total_size)) }
57 } else {
58 arr.data = vcalloc(total_size)
59 }
60 if val != 0 {
61 mut eptr := &u8(arr.data)
62 unsafe {
63 if eptr != nil {
64 if arr.element_size == 1 {
65 byte_value := *(&u8(val))
66 for i in 0 .. arr.len {
67 eptr[i] = byte_value
68 }
69 } else {
70 for _ in 0 .. arr.len {
71 vmemcpy(eptr, val, arr.element_size)
72 eptr += arr.element_size
73 }
74 }
75 }
76 }
77 }
78 return arr
79}
80
81fn __new_array_with_multi_default(mylen int, cap int, elm_size int, val voidptr) array {
82 cap_ := if cap < mylen { mylen } else { cap }
83 mut arr := array{
84 element_size: elm_size
85 len: mylen
86 cap: cap_
87 }
88 // x := []EmptyStruct{cap:5} ; for clang/gcc with -gc none,
89 // -> sizeof(EmptyStruct) == 0 -> elm_size == 0
90 // -> total_size == 0 -> malloc(0) -> panic;
91 // to avoid it, just allocate a single byte
92 total_size := u64(cap_) * u64(elm_size)
93 arr.data = vcalloc(__at_least_one(total_size))
94 if val != 0 {
95 mut eptr := &u8(arr.data)
96 unsafe {
97 if eptr != nil {
98 for i in 0 .. arr.len {
99 vmemcpy(eptr, charptr(val) + i * arr.element_size, arr.element_size)
100 eptr += arr.element_size
101 }
102 }
103 }
104 }
105 return arr
106}
107
108fn __new_array_with_array_default(mylen int, cap int, elm_size int, val array, depth int) array {
109 cap_ := if cap < mylen { mylen } else { cap }
110 mut arr := array{
111 element_size: elm_size
112 data: unsafe { malloc(__at_least_one(u64(cap_) * u64(elm_size))) }
113 len: mylen
114 cap: cap_
115 }
116 mut eptr := &u8(arr.data)
117 unsafe {
118 if eptr != nil {
119 for _ in 0 .. arr.len {
120 val_clone := val.clone_to_depth(depth)
121 vmemcpy(eptr, &val_clone, arr.element_size)
122 eptr += arr.element_size
123 }
124 }
125 }
126 return arr
127}
128
129fn __new_array_with_map_default(mylen int, cap int, elm_size int, val map) array {
130 cap_ := if cap < mylen { mylen } else { cap }
131 mut arr := array{
132 element_size: elm_size
133 data: unsafe { malloc(__at_least_one(u64(cap_) * u64(elm_size))) }
134 len: mylen
135 cap: cap_
136 }
137 mut eptr := &u8(arr.data)
138 unsafe {
139 if eptr != nil {
140 for _ in 0 .. arr.len {
141 val_clone := val.clone()
142 vmemcpy(eptr, &val_clone, arr.element_size)
143 eptr += arr.element_size
144 }
145 }
146 }
147 return arr
148}
149
150// Private function, used by V (`nums := [1, 2, 3]`)
151fn new_array_from_c_array(len int, cap int, elm_size int, c_array voidptr) array {
152 cap_ := if cap < len { len } else { cap }
153 arr := array{
154 element_size: elm_size
155 data: vcalloc(u64(cap_) * u64(elm_size))
156 len: len
157 cap: cap_
158 }
159 // TODO Write all memory functions (like memcpy) in V
160 unsafe { vmemcpy(arr.data, c_array, u64(len) * u64(elm_size)) }
161 return arr
162}
163
164// Private function, used by V (`nums := [1, 2, 3] !`)
165fn new_array_from_c_array_no_alloc(len int, cap int, elm_size int, c_array voidptr) array {
166 arr := array{
167 element_size: elm_size
168 data: c_array
169 len: len
170 cap: cap
171 }
172 return arr
173}
174
175// Private function. Increases the `cap` of an array to the
176// required value by copying the data to a new memory location
177// (creating a clone) unless `a.cap` is already large enough.
178fn (mut a array) ensure_cap(required int) {
179 if required <= a.cap {
180 return
181 }
182 if a.flags.has(.nogrow) {
183 panic('array.ensure_cap: array with the flag `.nogrow` cannot grow in size, array required new size: ${required}')
184 }
185 mut cap := if a.cap > 0 { a.cap } else { 2 }
186 for required > cap {
187 cap *= 2
188 }
189 new_size := u64(cap) * u64(a.element_size)
190 new_data := unsafe { malloc(__at_least_one(new_size)) }
191 if a.data != unsafe { nil } {
192 unsafe { vmemcpy(new_data, a.data, u64(a.len) * u64(a.element_size)) }
193 // TODO: the old data may be leaked when no GC is used (ref-counting?)
194 if a.flags.has(.noslices) {
195 unsafe {
196 free(a.data)
197 }
198 }
199 }
200 a.data = new_data
201 a.offset = 0
202 a.cap = cap
203}
204
205// repeat returns a new array with the given array elements repeated given times.
206// `cgen` will replace this with an apropriate call to `repeat_to_depth()`
207//
208// This is a dummy placeholder that will be overridden by `cgen` with an appropriate
209// call to `repeat_to_depth()`. However the `checker` needs it here.
210pub fn (a array) repeat(count int) array {
211 return unsafe { a.repeat_to_depth(count, 0) }
212}
213
214// repeat_to_depth is an unsafe version of `repeat()` that handles
215// multi-dimensional arrays.
216//
217// It is `unsafe` to call directly because `depth` is not checked
218[direct_array_access; unsafe]
219pub fn (a array) repeat_to_depth(count int, depth int) array {
220 if count < 0 {
221 panic('array.repeat: count is negative: ${count}')
222 }
223 mut size := u64(count) * u64(a.len) * u64(a.element_size)
224 if size == 0 {
225 size = u64(a.element_size)
226 }
227 arr := array{
228 element_size: a.element_size
229 data: vcalloc(size)
230 len: count * a.len
231 cap: count * a.len
232 }
233 if a.len > 0 {
234 a_total_size := u64(a.len) * u64(a.element_size)
235 arr_step_size := u64(a.len) * u64(arr.element_size)
236 mut eptr := &u8(arr.data)
237 unsafe {
238 if eptr != nil {
239 for _ in 0 .. count {
240 if depth > 0 {
241 ary_clone := a.clone_to_depth(depth)
242 vmemcpy(eptr, &u8(ary_clone.data), a_total_size)
243 } else {
244 vmemcpy(eptr, &u8(a.data), a_total_size)
245 }
246 eptr += arr_step_size
247 }
248 }
249 }
250 }
251 return arr
252}
253
254// insert inserts a value in the array at index `i` and increases
255// the index of subsequent elements by 1.
256//
257// This function is type-aware and can insert items of the same
258// or lower dimensionality as the original array. That is, if
259// the original array is `[]int`, then the insert `val` may be
260// `int` or `[]int`. If the original array is `[][]int`, then `val`
261// may be `[]int` or `[][]int`. Consider the examples.
262//
263// Example:
264// ```v
265// mut a := [1, 2, 4]
266// a.insert(2, 3) // a now is [1, 2, 3, 4]
267// mut b := [3, 4]
268// b.insert(0, [1, 2]) // b now is [1, 2, 3, 4]
269// mut c := [[3, 4]]
270// c.insert(0, [1, 2]) // c now is [[1, 2], [3, 4]]
271// ```
272pub fn (mut a array) insert(i int, val voidptr) {
273 $if !no_bounds_checking {
274 if i < 0 || i > a.len {
275 panic('array.insert: index out of range (i == ${i}, a.len == ${a.len})')
276 }
277 }
278 if a.len >= a.cap {
279 a.ensure_cap(a.len + 1)
280 }
281 unsafe {
282 vmemmove(a.get_unsafe(i + 1), a.get_unsafe(i), u64((a.len - i)) * u64(a.element_size))
283 a.set_unsafe(i, val)
284 }
285 a.len++
286}
287
288// insert_many is used internally to implement inserting many values
289// into an the array beginning at `i`.
290[unsafe]
291fn (mut a array) insert_many(i int, val voidptr, size int) {
292 $if !no_bounds_checking {
293 if i < 0 || i > a.len {
294 panic('array.insert_many: index out of range (i == ${i}, a.len == ${a.len})')
295 }
296 }
297 a.ensure_cap(a.len + size)
298 elem_size := a.element_size
299 unsafe {
300 iptr := a.get_unsafe(i)
301 vmemmove(a.get_unsafe(i + size), iptr, u64(a.len - i) * u64(elem_size))
302 vmemcpy(iptr, val, u64(size) * u64(elem_size))
303 }
304 a.len += size
305}
306
307// prepend prepends one or more elements to an array.
308// It is shorthand for `.insert(0, val)`
309pub fn (mut a array) prepend(val voidptr) {
310 a.insert(0, val)
311}
312
313// prepend_many prepends another array to this array.
314// NOTE: `.prepend` is probably all you need.
315// NOTE: This code is never called in all of vlib
316[unsafe]
317fn (mut a array) prepend_many(val voidptr, size int) {
318 unsafe { a.insert_many(0, val, size) }
319}
320
321// delete deletes array element at index `i`.
322// This is exactly the same as calling `.delete_many(i, 1)`.
323// NOTE: This function does NOT operate in-place. Internally, it
324// creates a copy of the array, skipping over the element at `i`,
325// and then points the original variable to the new memory location.
326//
327// Example:
328// ```v
329// mut a := ['0', '1', '2', '3', '4', '5']
330// a.delete(1) // a is now ['0', '2', '3', '4', '5']
331// ```
332pub fn (mut a array) delete(i int) {
333 a.delete_many(i, 1)
334}
335
336// delete_many deletes `size` elements beginning with index `i`
337// NOTE: This function does NOT operate in-place. Internally, it
338// creates a copy of the array, skipping over `size` elements
339// starting at `i`, and then points the original variable
340// to the new memory location.
341//
342// Example:
343// ```v
344// mut a := [1, 2, 3, 4, 5, 6, 7, 8, 9]
345// b := a[..9] // creates a `slice` of `a`, not a clone
346// a.delete_many(4, 3) // replaces `a` with a modified clone
347// dump(a) // a: [1, 2, 3, 4, 8, 9] // `a` is now different
348// dump(b) // b: [1, 2, 3, 4, 5, 6, 7, 8, 9] // `b` is still the same
349// ```
350pub fn (mut a array) delete_many(i int, size int) {
351 $if !no_bounds_checking {
352 if i < 0 || i + size > a.len {
353 endidx := if size > 1 { '..${i + size}' } else { '' }
354 panic('array.delete: index out of range (i == ${i}${endidx}, a.len == ${a.len})')
355 }
356 }
357 if a.flags.all(.noshrink | .noslices) {
358 unsafe {
359 vmemmove(&u8(a.data) + u64(i) * u64(a.element_size), &u8(a.data) + u64(i +
360 size) * u64(a.element_size), u64(a.len - i - size) * u64(a.element_size))
361 }
362 a.len -= size
363 return
364 }
365 // Note: if a is [12,34], a.len = 2, a.delete(0)
366 // should move (2-0-1) elements = 1 element (the 34) forward
367 old_data := a.data
368 new_size := a.len - size
369 new_cap := if new_size == 0 { 1 } else { new_size }
370 a.data = vcalloc(u64(new_cap) * u64(a.element_size))
371 unsafe { vmemcpy(a.data, old_data, u64(i) * u64(a.element_size)) }
372 unsafe {
373 vmemcpy(&u8(a.data) + u64(i) * u64(a.element_size), &u8(old_data) + u64(i +
374 size) * u64(a.element_size), u64(a.len - i - size) * u64(a.element_size))
375 }
376 if a.flags.has(.noslices) {
377 unsafe {
378 free(old_data)
379 }
380 }
381 a.len = new_size
382 a.cap = new_cap
383}
384
385// clear clears the array without deallocating the allocated data.
386// It does it by setting the array length to `0`
387// Example: a.clear() // `a.len` is now 0
388pub fn (mut a array) clear() {
389 a.len = 0
390}
391
392// trim trims the array length to `index` without modifying the allocated data.
393// If `index` is greater than `len` nothing will be changed.
394// Example: a.trim(3) // `a.len` is now <= 3
395pub fn (mut a array) trim(index int) {
396 if index < a.len {
397 a.len = index
398 }
399}
400
401// drop advances the array past the first `num` elements whilst preserving spare capacity.
402// If `num` is greater than `len` the array will be emptied.
403// Example:
404// ```v
405// mut a := [1,2]
406// a << 3
407// a.drop(2)
408// assert a == [3]
409// assert a.cap > a.len
410// ```
411pub fn (mut a array) drop(num int) {
412 if num <= 0 {
413 return
414 }
415 n := if num <= a.len { num } else { a.len }
416 blen := u64(n) * u64(a.element_size)
417 a.data = unsafe { &u8(a.data) + blen }
418 a.offset += int(blen) // TODO: offset should become 64bit as well
419 a.len -= n
420 a.cap -= n
421}
422
423// we manually inline this for single operations for performance without -prod
424[inline; unsafe]
425fn (a array) get_unsafe(i int) voidptr {
426 unsafe {
427 return &u8(a.data) + u64(i) * u64(a.element_size)
428 }
429}
430
431// Private function. Used to implement array[] operator.
432fn (a array) get(i int) voidptr {
433 $if !no_bounds_checking {
434 if i < 0 || i >= a.len {
435 panic('array.get: index out of range (i == ${i}, a.len == ${a.len})')
436 }
437 }
438 unsafe {
439 return &u8(a.data) + u64(i) * u64(a.element_size)
440 }
441}
442
443// Private function. Used to implement x = a[i] or { ... }
444fn (a array) get_with_check(i int) voidptr {
445 if i < 0 || i >= a.len {
446 return 0
447 }
448 unsafe {
449 return &u8(a.data) + u64(i) * u64(a.element_size)
450 }
451}
452
453// first returns the first element of the `array`.
454// If the `array` is empty, this will panic.
455// However, `a[0]` returns an error object
456// so it can be handled with an `or` block.
457pub fn (a array) first() voidptr {
458 $if !no_bounds_checking {
459 if a.len == 0 {
460 panic('array.first: array is empty')
461 }
462 }
463 return a.data
464}
465
466// last returns the last element of the `array`.
467// If the `array` is empty, this will panic.
468pub fn (a array) last() voidptr {
469 $if !no_bounds_checking {
470 if a.len == 0 {
471 panic('array.last: array is empty')
472 }
473 }
474 unsafe {
475 return &u8(a.data) + u64(a.len - 1) * u64(a.element_size)
476 }
477}
478
479// pop returns the last element of the array, and removes it.
480// If the `array` is empty, this will panic.
481// NOTE: this function reduces the length of the given array,
482// but arrays sliced from this one will not change. They still
483// retain their "view" of the underlying memory.
484//
485// Example:
486// ```v
487// mut a := [1, 2, 3, 4, 5, 6, 7, 8, 9]
488// b := a[..9] // creates a "view" into the same memory
489// c := a.pop() // c == 9
490// a[1] = 5
491// dump(a) // a: [1, 5, 3, 4, 5, 6, 7, 8]
492// dump(b) // b: [1, 5, 3, 4, 5, 6, 7, 8, 9]
493// ```
494pub fn (mut a array) pop() voidptr {
495 // in a sense, this is the opposite of `a << x`
496 $if !no_bounds_checking {
497 if a.len == 0 {
498 panic('array.pop: array is empty')
499 }
500 }
501 new_len := a.len - 1
502 last_elem := unsafe { &u8(a.data) + u64(new_len) * u64(a.element_size) }
503 a.len = new_len
504 // Note: a.cap is not changed here *on purpose*, so that
505 // further << ops on that array will be more efficient.
506 return last_elem
507}
508
509// delete_last efficiently deletes the last element of the array.
510// It does it simply by reducing the length of the array by 1.
511// If the array is empty, this will panic.
512// See also: [trim](#array.trim)
513pub fn (mut a array) delete_last() {
514 // copy pasting code for performance
515 $if !no_bounds_checking {
516 if a.len == 0 {
517 panic('array.pop: array is empty')
518 }
519 }
520 a.len--
521}
522
523// slice returns an array using the same buffer as original array
524// but starting from the `start` element and ending with the element before
525// the `end` element of the original array with the length and capacity
526// set to the number of the elements in the slice.
527// It will remain tied to the same memory location until the length increases
528// (copy on grow) or `.clone()` is called on it.
529// If `start` and `end` are invalid this function will panic.
530// Alternative: Slices can also be made with [start..end] notation
531// Alternative: `.slice_ni()` will always return an array.
532fn (a array) slice(start int, _end int) array {
533 mut end := _end
534 $if !no_bounds_checking {
535 if start > end {
536 panic('array.slice: invalid slice index (${start} > ${end})')
537 }
538 if end > a.len {
539 panic('array.slice: slice bounds out of range (${end} >= ${a.len})')
540 }
541 if start < 0 {
542 panic('array.slice: slice bounds out of range (${start} < 0)')
543 }
544 }
545 // TODO: integrate reference counting
546 // a.flags.clear(.noslices)
547 offset := u64(start) * u64(a.element_size)
548 data := unsafe { &u8(a.data) + offset }
549 l := end - start
550 res := array{
551 element_size: a.element_size
552 data: data
553 offset: a.offset + int(offset) // TODO: offset should become 64bit
554 len: l
555 cap: l
556 }
557 return res
558}
559
560// slice_ni returns an array using the same buffer as original array
561// but starting from the `start` element and ending with the element before
562// the `end` element of the original array.
563// This function can use negative indexes `a.slice_ni(-3, a.len)`
564// that get the last 3 elements of the array otherwise it return an empty array.
565// This function always return a valid array.
566fn (a array) slice_ni(_start int, _end int) array {
567 // a.flags.clear(.noslices)
568 mut end := _end
569 mut start := _start
570
571 if start < 0 {
572 start = a.len + start
573 if start < 0 {
574 start = 0
575 }
576 }
577
578 if end < 0 {
579 end = a.len + end
580 if end < 0 {
581 end = 0
582 }
583 }
584 if end >= a.len {
585 end = a.len
586 }
587
588 if start >= a.len || start > end {
589 res := array{
590 element_size: a.element_size
591 data: a.data
592 offset: 0
593 len: 0
594 cap: 0
595 }
596 return res
597 }
598
599 offset := u64(start) * u64(a.element_size)
600 data := unsafe { &u8(a.data) + offset }
601 l := end - start
602 res := array{
603 element_size: a.element_size
604 data: data
605 offset: a.offset + int(offset) // TODO: offset should be 64bit
606 len: l
607 cap: l
608 }
609 return res
610}
611
612// used internally for [2..4]
613fn (a array) slice2(start int, _end int, end_max bool) array {
614 end := if end_max { a.len } else { _end }
615 return a.slice(start, end)
616}
617
618// clone_static_to_depth() returns an independent copy of a given array.
619// Unlike `clone_to_depth()` it has a value receiver and is used internally
620// for slice-clone expressions like `a[2..4].clone()` and in -autofree generated code.
621fn (a array) clone_static_to_depth(depth int) array {
622 return unsafe { a.clone_to_depth(depth) }
623}
624
625// clone returns an independent copy of a given array.
626// this will be overwritten by `cgen` with an apropriate call to `.clone_to_depth()`
627// However the `checker` needs it here.
628pub fn (a &array) clone() array {
629 return unsafe { a.clone_to_depth(0) }
630}
631
632// recursively clone given array - `unsafe` when called directly because depth is not checked
633[unsafe]
634pub fn (a &array) clone_to_depth(depth int) array {
635 mut arr := array{
636 element_size: a.element_size
637 data: vcalloc(u64(a.cap) * u64(a.element_size))
638 len: a.len
639 cap: a.cap
640 }
641 // Recursively clone-generated elements if array element is array type
642 if depth > 0 && a.element_size == sizeof(array) && a.len >= 0 && a.cap >= a.len {
643 for i in 0 .. a.len {
644 ar := array{}
645 unsafe { vmemcpy(&ar, a.get_unsafe(i), int(sizeof(array))) }
646 ar_clone := unsafe { ar.clone_to_depth(depth - 1) }
647 unsafe { arr.set_unsafe(i, &ar_clone) }
648 }
649 return arr
650 } else {
651 if a.data != 0 {
652 unsafe { vmemcpy(&u8(arr.data), a.data, u64(a.cap) * u64(a.element_size)) }
653 }
654 return arr
655 }
656}
657
658// we manually inline this for single operations for performance without -prod
659[inline; unsafe]
660fn (mut a array) set_unsafe(i int, val voidptr) {
661 unsafe { vmemcpy(&u8(a.data) + u64(a.element_size) * u64(i), val, a.element_size) }
662}
663
664// Private function. Used to implement assignment to the array element.
665fn (mut a array) set(i int, val voidptr) {
666 $if !no_bounds_checking {
667 if i < 0 || i >= a.len {
668 panic('array.set: index out of range (i == ${i}, a.len == ${a.len})')
669 }
670 }
671 unsafe { vmemcpy(&u8(a.data) + u64(a.element_size) * u64(i), val, a.element_size) }
672}
673
674fn (mut a array) push(val voidptr) {
675 if a.len >= a.cap {
676 a.ensure_cap(a.len + 1)
677 }
678 unsafe { vmemcpy(&u8(a.data) + u64(a.element_size) * u64(a.len), val, a.element_size) }
679 a.len++
680}
681
682// push_many implements the functionality for pushing another array.
683// `val` is array.data and user facing usage is `a << [1,2,3]`
684[unsafe]
685pub fn (mut a3 array) push_many(val voidptr, size int) {
686 if size <= 0 || val == unsafe { nil } {
687 return
688 }
689 a3.ensure_cap(a3.len + size)
690 if a3.data == val && a3.data != 0 {
691 // handle `arr << arr`
692 copy := a3.clone()
693 unsafe {
694 vmemcpy(&u8(a3.data) + u64(a3.element_size) * u64(a3.len), copy.data, u64(a3.element_size) * u64(size))
695 }
696 } else {
697 if a3.data != 0 && val != 0 {
698 unsafe { vmemcpy(&u8(a3.data) + u64(a3.element_size) * u64(a3.len), val, u64(a3.element_size) * u64(size)) }
699 }
700 }
701 a3.len += size
702}
703
704// reverse_in_place reverses existing array data, modifying original array.
705pub fn (mut a array) reverse_in_place() {
706 if a.len < 2 || a.element_size == 0 {
707 return
708 }
709 unsafe {
710 mut tmp_value := malloc(a.element_size)
711 for i in 0 .. a.len / 2 {
712 vmemcpy(tmp_value, &u8(a.data) + u64(i) * u64(a.element_size), a.element_size)
713 vmemcpy(&u8(a.data) + u64(i) * u64(a.element_size), &u8(a.data) +
714 u64(a.len - 1 - i) * u64(a.element_size), a.element_size)
715 vmemcpy(&u8(a.data) + u64(a.len - 1 - i) * u64(a.element_size), tmp_value,
716 a.element_size)
717 }
718 free(tmp_value)
719 }
720}
721
722// reverse returns a new array with the elements of the original array in reverse order.
723pub fn (a array) reverse() array {
724 if a.len < 2 {
725 return a
726 }
727 mut arr := array{
728 element_size: a.element_size
729 data: vcalloc(u64(a.cap) * u64(a.element_size))
730 len: a.len
731 cap: a.cap
732 }
733 for i in 0 .. a.len {
734 unsafe { arr.set_unsafe(i, a.get_unsafe(a.len - 1 - i)) }
735 }
736 return arr
737}
738
739// free frees all memory occupied by the array.
740[unsafe]
741pub fn (a &array) free() {
742 $if prealloc {
743 return
744 }
745 // if a.is_slice {
746 // return
747 // }
748 if a.flags.has(.nofree) {
749 return
750 }
751 mblock_ptr := &u8(u64(a.data) - u64(a.offset))
752 unsafe { free(mblock_ptr) }
753 unsafe {
754 a.data = nil
755 }
756}
757
758// Some of the following functions have no implementation in V and exist here
759// to expose them to the array namespace. Their implementation is compiler
760// specific because of their use of `it` and `a < b` expressions.
761// Therefore, the implementation is left to the backend.
762
763// filter creates a new array with all elements that pass the test.
764// Ignore the function signature. `filter` does not take an actual callback. Rather, it
765// takes an `it` expression.
766//
767// Certain array functions (`filter` `any` `all`) support a simplified
768// domain-specific-language by the backend compiler to make these operations
769// more idiomatic to V. These functions are described here, but their implementation
770// is compiler specific.
771//
772// Each function takes a boolean test expression as its single argument.
773// These test expressions may use `it` as a pointer to a single element at a time.
774//
775// Example: array.filter(it < 5) // create an array of elements less than 5
776// Example: array.filter(it % 2 == 1) // create an array of only odd elements
777// Example: array.filter(it.name[0] == `A`) // create an array of elements whose `name` field starts with 'A'
778pub fn (a array) filter(predicate fn (voidptr) bool) array
779
780// any tests whether at least one element in the array passes the test.
781// Ignore the function signature. `any` does not take an actual callback. Rather, it
782// takes an `it` expression.
783// It returns `true` if it finds an element passing the test. Otherwise,
784// it returns `false`. It doesn't modify the array.
785//
786// Example: array.any(it % 2 == 1) // will return true if any element is odd
787// Example: array.any(it.name == 'Bob') // will yield `true` if any element has `.name == 'Bob'`
788pub fn (a array) any(predicate fn (voidptr) bool) bool
789
790// all tests whether all elements in the array pass the test.
791// Ignore the function signature. `all` does not take an actual callback. Rather, it
792// takes an `it` expression.
793// It returns `false` if any element fails the test. Otherwise,
794// it returns `true`. It doesn't modify the array.
795//
796// Example: array.all(it % 2 == 1) // will return true if every element is odd
797pub fn (a array) all(predicate fn (voidptr) bool) bool
798
799// map creates a new array populated with the results of calling a provided function
800// on every element in the calling array.
801// It also accepts an `it` expression.
802//
803// Example:
804// ```v
805// words := ['hello', 'world']
806// r1 := words.map(it.to_upper())
807// assert r1 == ['HELLO', 'WORLD']
808//
809// // map can also accept anonymous functions
810// r2 := words.map(fn (w string) string {
811// return w.to_upper()
812// })
813// assert r2 == ['HELLO', 'WORLD']
814// ```
815pub fn (a array) map(callback fn (voidptr) voidptr) array
816
817// sort sorts the array in place.
818// Ignore the function signature. Passing a callback to `.sort` is not supported
819// for now. Consider using the `.sort_with_compare` method if you need it.
820//
821// sort can take a boolean test expression as its single argument.
822// The expression uses 2 'magic' variables `a` and `b` as pointers to the two elements
823// being compared.
824//
825// Example: array.sort() // will sort the array in ascending order
826// Example: array.sort(b < a) // will sort the array in decending order
827// Example: array.sort(b.name < a.name) // will sort descending by the .name field
828pub fn (mut a array) sort(callback fn (voidptr, voidptr) int)
829
830// sorted returns a sorted copy of the original array. The original array is *NOT* modified.
831// See also .sort() .
832// Example: assert [9,1,6,3,9].sorted() == [1,3,6,9,9]
833// Example: assert [9,1,6,3,9].sorted(b < a) == [9,9,6,3,1]
834pub fn (a &array) sorted(callback fn (voidptr, voidptr) int) array
835
836// sort_with_compare sorts the array in-place using the results of the
837// given function to determine sort order.
838//
839// The function should return one of three values:
840// - `-1` when `a` should come before `b` ( `a < b` )
841// - `1` when `b` should come before `a` ( `b < a` )
842// - `0` when the order cannot be determined ( `a == b` )
843//
844// Example:
845// ```v
846// fn main() {
847// mut a := ['hi', '1', '5', '3']
848// a.sort_with_compare(fn (a &string, b &string) int {
849// if a < b {
850// return -1
851// }
852// if a > b {
853// return 1
854// }
855// return 0
856// })
857// assert a == ['1', '3', '5', 'hi']
858// }
859// ```
860pub fn (mut a array) sort_with_compare(callback fn (voidptr, voidptr) int) {
861 $if freestanding {
862 panic('sort_with_compare does not work with -freestanding')
863 } $else {
864 unsafe { vqsort(a.data, usize(a.len), usize(a.element_size), callback) }
865 }
866}
867
868// sorted_with_compare sorts a clone of the array, using the results of the
869// given function to determine sort order. The original array is not modified.
870// See also .sort_with_compare()
871pub fn (a &array) sorted_with_compare(callback fn (voidptr, voidptr) int) array {
872 $if freestanding {
873 panic('sorted_with_compare does not work with -freestanding')
874 } $else {
875 mut r := a.clone()
876 unsafe { vqsort(r.data, usize(r.len), usize(r.element_size), callback) }
877 return r
878 }
879 return array{}
880}
881
882// contains determines whether an array includes a certain value among its elements
883// It will return `true` if the array contains an element with this value.
884// It is similar to `.any` but does not take an `it` expression.
885//
886// Example: [1, 2, 3].contains(4) == false
887pub fn (a array) contains(value voidptr) bool
888
889// index returns the first index at which a given element can be found in the array
890// or `-1` if the value is not found.
891pub fn (a array) index(value voidptr) int
892
893[direct_array_access; unsafe]
894pub fn (mut a []string) free() {
895 $if prealloc {
896 return
897 }
898 for mut s in a {
899 unsafe { s.free() }
900 }
901 unsafe { (&array(&a)).free() }
902}
903
904// The following functions are type-specific functions that apply
905// to arrays of different types in different ways.
906
907// str returns a string representation of an array of strings
908// Example: ['a', 'b', 'c'].str() // => "['a', 'b', 'c']".
909[direct_array_access; manualfree]
910pub fn (a []string) str() string {
911 mut sb_len := 4 // 2x" + 1x, + 1xspace
912 if a.len > 0 {
913 // assume that most strings will be ~large as the first
914 sb_len += a[0].len
915 sb_len *= a.len
916 }
917 sb_len += 2 // 1x[ + 1x]
918 mut sb := strings.new_builder(sb_len)
919 sb.write_u8(`[`)
920 for i in 0 .. a.len {
921 val := a[i]
922 sb.write_u8(`'`)
923 sb.write_string(val)
924 sb.write_u8(`'`)
925 if i < a.len - 1 {
926 sb.write_string(', ')
927 }
928 }
929 sb.write_u8(`]`)
930 res := sb.str()
931 unsafe { sb.free() }
932 return res
933}
934
935// hex returns a string with the hexadecimal representation
936// of the byte elements of the array.
937pub fn (b []u8) hex() string {
938 mut hex := unsafe { malloc_noscan(u64(b.len) * 2 + 1) }
939 mut dst_i := 0
940 for i in b {
941 n0 := i >> 4
942 unsafe {
943 hex[dst_i] = if n0 < 10 { n0 + `0` } else { n0 + u8(87) }
944 dst_i++
945 }
946 n1 := i & 0xF
947 unsafe {
948 hex[dst_i] = if n1 < 10 { n1 + `0` } else { n1 + u8(87) }
949 dst_i++
950 }
951 }
952 unsafe {
953 hex[dst_i] = 0
954 return tos(hex, dst_i)
955 }
956}
957
958// copy copies the `src` byte array elements to the `dst` byte array.
959// The number of the elements copied is the minimum of the length of both arrays.
960// Returns the number of elements copied.
961// NOTE: This is not an `array` method. It is a function that takes two arrays of bytes.
962// See also: `arrays.copy`.
963pub fn copy(mut dst []u8, src []u8) int {
964 min := if dst.len < src.len { dst.len } else { src.len }
965 if min > 0 {
966 unsafe { vmemmove(&u8(dst.data), src.data, min) }
967 }
968 return min
969}
970
971// grow_cap grows the array's capacity by `amount` elements.
972// Internally, it does this by copying the entire array to
973// a new memory location (creating a clone).
974pub fn (mut a array) grow_cap(amount int) {
975 a.ensure_cap(a.cap + amount)
976}
977
978// grow_len ensures that an array has a.len + amount of length
979// Internally, it does this by copying the entire array to
980// a new memory location (creating a clone) unless the array.cap
981// is already large enough.
982[unsafe]
983pub fn (mut a array) grow_len(amount int) {
984 a.ensure_cap(a.len + amount)
985 a.len += amount
986}
987
988// pointers returns a new array, where each element
989// is the address of the corresponding element in the array.
990[unsafe]
991pub fn (a array) pointers() []voidptr {
992 mut res := []voidptr{}
993 for i in 0 .. a.len {
994 unsafe { res << a.get_unsafe(i) }
995 }
996 return res
997}
998
999// vbytes on`voidptr` makes a V []u8 structure from a C style memory buffer.
1000// NOTE: the data is reused, NOT copied!
1001[unsafe]
1002pub fn (data voidptr) vbytes(len int) []u8 {
1003 res := array{
1004 element_size: 1
1005 data: data
1006 len: len
1007 cap: len
1008 }
1009 return res
1010}
1011
1012// vbytes on `&u8` makes a V []u8 structure from a C style memory buffer.
1013// NOTE: the data is reused, NOT copied!
1014[unsafe]
1015pub fn (data &u8) vbytes(len int) []u8 {
1016 return unsafe { voidptr(data).vbytes(len) }
1017}