v / vlib / math
Raw file | 235 loc (211 sloc) | 5.17 KB | Latest commit hash 017ace6ea
1// Copyright (c) 2019-2023 Alexander Medvednikov. All rights reserved.
2// Use of this source code is governed by an MIT license
3// that can be found in the LICENSE file.
4module math
5
6// aprox_sin returns an approximation of sin(a) made using lolremez
7pub fn aprox_sin(a f64) f64 {
8 a0 := 1.91059300966915117e-31
9 a1 := 1.00086760103908896
10 a2 := -1.21276126894734565e-2
11 a3 := -1.38078780785773762e-1
12 a4 := -2.67353392911981221e-2
13 a5 := 2.08026600266304389e-2
14 a6 := -3.03996055049204407e-3
15 a7 := 1.38235642404333740e-4
16 return a0 + a * (a1 + a * (a2 + a * (a3 + a * (a4 + a * (a5 + a * (a6 + a * a7))))))
17}
18
19// aprox_cos returns an approximation of sin(a) made using lolremez
20pub fn aprox_cos(a f64) f64 {
21 a0 := 9.9995999154986614e-1
22 a1 := 1.2548995793001028e-3
23 a2 := -5.0648546280678015e-1
24 a3 := 1.2942246466519995e-2
25 a4 := 2.8668384702547972e-2
26 a5 := 7.3726485210586547e-3
27 a6 := -3.8510875386947414e-3
28 a7 := 4.7196604604366623e-4
29 a8 := -1.8776444013090451e-5
30 return a0 + a * (a1 + a * (a2 + a * (a3 + a * (a4 + a * (a5 + a * (a6 + a * (a7 + a * a8)))))))
31}
32
33// copysign returns a value with the magnitude of x and the sign of y
34[inline]
35pub fn copysign(x f64, y f64) f64 {
36 return f64_from_bits((f64_bits(x) & ~sign_mask) | (f64_bits(y) & sign_mask))
37}
38
39// degrees converts from radians to degrees.
40[inline]
41pub fn degrees(radians f64) f64 {
42 return radians * (180.0 / pi)
43}
44
45// angle_diff calculates the difference between angles in radians
46[inline]
47pub fn angle_diff(radian_a f64, radian_b f64) f64 {
48 mut delta := fmod(radian_b - radian_a, tau)
49 delta = fmod(delta + 1.5 * tau, tau)
50 delta -= .5 * tau
51 return delta
52}
53
54[params]
55pub struct DigitParams {
56 base int = 10
57 reverse bool
58}
59
60// digits returns an array of the digits of `num` in the given optional `base`.
61// The `num` argument accepts any integer type (i8|i16|int|isize|i64), and will be cast to i64
62// The `base:` argument is optional, it will default to base: 10.
63// This function returns an array of the digits in reverse order i.e.:
64// Example: assert math.digits(12345, base: 10) == [5,4,3,2,1]
65// You can also use it, with an explicit `reverse: true` parameter,
66// (it will do a reverse of the result array internally => slower):
67// Example: assert math.digits(12345, reverse: true) == [1,2,3,4,5]
68pub fn digits(num i64, params DigitParams) []int {
69 // set base to 10 initially and change only if base is explicitly set.
70 mut b := params.base
71 if b < 2 {
72 panic('digits: Cannot find digits of n with base ${b}')
73 }
74 mut n := num
75 mut sign := 1
76 if n < 0 {
77 sign = -1
78 n = -n
79 }
80
81 mut res := []int{}
82 if n == 0 {
83 // short-circuit and return 0
84 res << 0
85 return res
86 }
87 for n != 0 {
88 next_n := n / b
89 res << int(n - next_n * b)
90 n = next_n
91 }
92
93 if sign == -1 {
94 res[res.len - 1] *= sign
95 }
96
97 if params.reverse {
98 res = res.reverse()
99 }
100
101 return res
102}
103
104// count_digits return the number of digits in the number passed.
105// Number argument accepts any integer type (i8|i16|int|isize|i64) and will be cast to i64
106pub fn count_digits(number i64) int {
107 mut n := number
108 if n == 0 {
109 return 1
110 }
111 mut c := 0
112 for n != 0 {
113 n = n / 10
114 c++
115 }
116 return c
117}
118
119// minmax returns the minimum and maximum value of the two provided.
120pub fn minmax(a f64, b f64) (f64, f64) {
121 if a < b {
122 return a, b
123 }
124 return b, a
125}
126
127// clamp returns x constrained between a and b
128[inline]
129pub fn clamp(x f64, a f64, b f64) f64 {
130 if x < a {
131 return a
132 }
133 if x > b {
134 return b
135 }
136 return x
137}
138
139// sign returns the corresponding sign -1.0, 1.0 of the provided number.
140// if n is not a number, its sign is nan too.
141[inline]
142pub fn sign(n f64) f64 {
143 // dump(n)
144 if is_nan(n) {
145 return nan()
146 }
147 return copysign(1.0, n)
148}
149
150// signi returns the corresponding sign -1, 1 of the provided number.
151[inline]
152pub fn signi(n f64) int {
153 return int(copysign(1.0, n))
154}
155
156// radians converts from degrees to radians.
157[inline]
158pub fn radians(degrees f64) f64 {
159 return degrees * (pi / 180.0)
160}
161
162// signbit returns a value with the boolean representation of the sign for x
163[inline]
164pub fn signbit(x f64) bool {
165 return f64_bits(x) & sign_mask != 0
166}
167
168// tolerance checks if a and b difference are less than or equal to the tolerance value
169pub fn tolerance(a f64, b f64, tol f64) bool {
170 mut ee := tol
171 // Multiplying by ee here can underflow denormal values to zero.
172 // Check a==b so that at least if a and b are small and identical
173 // we say they match.
174 if a == b {
175 return true
176 }
177 mut d := a - b
178 if d < 0 {
179 d = -d
180 }
181 // note: b is correct (expected) value, a is actual value.
182 // make error tolerance a fraction of b, not a.
183 if b != 0 {
184 ee = ee * b
185 if ee < 0 {
186 ee = -ee
187 }
188 }
189 return d < ee
190}
191
192// close checks if a and b are within 1e-14 of each other
193pub fn close(a f64, b f64) bool {
194 return tolerance(a, b, 1e-14)
195}
196
197// veryclose checks if a and b are within 4e-16 of each other
198pub fn veryclose(a f64, b f64) bool {
199 return tolerance(a, b, 4e-16)
200}
201
202// alike checks if a and b are equal
203pub fn alike(a f64, b f64) bool {
204 // eprintln('>>> a: ${f64_bits(a):20} | b: ${f64_bits(b):20} | a==b: ${a == b} | a: ${a:10} | b: ${b:10}')
205 // compare a and b, ignoring their last 2 bits:
206 if f64_bits(a) & 0xFFFF_FFFF_FFFF_FFFC == f64_bits(b) & 0xFFFF_FFFF_FFFF_FFFC {
207 return true
208 }
209 if a == -0 && b == 0 {
210 return true
211 }
212 if a == 0 && b == -0 {
213 return true
214 }
215 if is_nan(a) && is_nan(b) {
216 return true
217 }
218 if a == b {
219 return signbit(a) == signbit(b)
220 }
221 return false
222}
223
224fn is_odd_int(x f64) bool {
225 xi, xf := modf(x)
226 return xf == 0 && (i64(xi) & 1) == 1
227}
228
229fn is_neg_int(x f64) bool {
230 if x < 0 {
231 _, xf := modf(x)
232 return xf == 0
233 }
234 return false
235}