// Copyright (c) 2019-2023 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module builtin import strings // array is a struct, used for denoting all array types in V. // `.data` is a void pointer to the backing heap memory block, // which avoids using generics and thus without generating extra // code for every type. pub struct array { pub mut: data voidptr offset int // in bytes (should be `usize`), to avoid copying data while making slices, unless it starts changing len int // length of the array in elements. cap int // capacity of the array in elements. flags ArrayFlags pub: element_size int // size in bytes of one element in the array. } [flag] pub enum ArrayFlags { noslices // when <<, `.noslices` will free the old data block immediately (you have to be sure, that there are *no slices* to that specific array). TODO: integrate with reference counting/compiler support for the static cases. noshrink // when `.noslices` and `.noshrink` are *both set*, .delete(x) will NOT allocate new memory and free the old. It will just move the elements in place, and adjust .len. nogrow // the array will never be allowed to grow past `.cap`. set `.nogrow` and `.noshrink` for a truly fixed heap array nofree // `.data` will never be freed } // Internal function, used by V (`nums := []int`) fn __new_array(mylen int, cap int, elm_size int) array { cap_ := if cap < mylen { mylen } else { cap } arr := array{ element_size: elm_size data: vcalloc(u64(cap_) * u64(elm_size)) len: mylen cap: cap_ } return arr } fn __new_array_with_default(mylen int, cap int, elm_size int, val voidptr) array { cap_ := if cap < mylen { mylen } else { cap } mut arr := array{ element_size: elm_size len: mylen cap: cap_ } // x := []EmptyStruct{cap:5} ; for clang/gcc with -gc none, // -> sizeof(EmptyStruct) == 0 -> elm_size == 0 // -> total_size == 0 -> malloc(0) -> panic; // to avoid it, just allocate a single byte total_size := u64(cap_) * u64(elm_size) if cap_ > 0 && mylen == 0 { arr.data = unsafe { malloc(__at_least_one(total_size)) } } else { arr.data = vcalloc(total_size) } if val != 0 { mut eptr := &u8(arr.data) unsafe { if eptr != nil { if arr.element_size == 1 { byte_value := *(&u8(val)) for i in 0 .. arr.len { eptr[i] = byte_value } } else { for _ in 0 .. arr.len { vmemcpy(eptr, val, arr.element_size) eptr += arr.element_size } } } } } return arr } fn __new_array_with_multi_default(mylen int, cap int, elm_size int, val voidptr) array { cap_ := if cap < mylen { mylen } else { cap } mut arr := array{ element_size: elm_size len: mylen cap: cap_ } // x := []EmptyStruct{cap:5} ; for clang/gcc with -gc none, // -> sizeof(EmptyStruct) == 0 -> elm_size == 0 // -> total_size == 0 -> malloc(0) -> panic; // to avoid it, just allocate a single byte total_size := u64(cap_) * u64(elm_size) arr.data = vcalloc(__at_least_one(total_size)) if val != 0 { mut eptr := &u8(arr.data) unsafe { if eptr != nil { for i in 0 .. arr.len { vmemcpy(eptr, charptr(val) + i * arr.element_size, arr.element_size) eptr += arr.element_size } } } } return arr } fn __new_array_with_array_default(mylen int, cap int, elm_size int, val array, depth int) array { cap_ := if cap < mylen { mylen } else { cap } mut arr := array{ element_size: elm_size data: unsafe { malloc(__at_least_one(u64(cap_) * u64(elm_size))) } len: mylen cap: cap_ } mut eptr := &u8(arr.data) unsafe { if eptr != nil { for _ in 0 .. arr.len { val_clone := val.clone_to_depth(depth) vmemcpy(eptr, &val_clone, arr.element_size) eptr += arr.element_size } } } return arr } fn __new_array_with_map_default(mylen int, cap int, elm_size int, val map) array { cap_ := if cap < mylen { mylen } else { cap } mut arr := array{ element_size: elm_size data: unsafe { malloc(__at_least_one(u64(cap_) * u64(elm_size))) } len: mylen cap: cap_ } mut eptr := &u8(arr.data) unsafe { if eptr != nil { for _ in 0 .. arr.len { val_clone := val.clone() vmemcpy(eptr, &val_clone, arr.element_size) eptr += arr.element_size } } } return arr } // Private function, used by V (`nums := [1, 2, 3]`) fn new_array_from_c_array(len int, cap int, elm_size int, c_array voidptr) array { cap_ := if cap < len { len } else { cap } arr := array{ element_size: elm_size data: vcalloc(u64(cap_) * u64(elm_size)) len: len cap: cap_ } // TODO Write all memory functions (like memcpy) in V unsafe { vmemcpy(arr.data, c_array, u64(len) * u64(elm_size)) } return arr } // Private function, used by V (`nums := [1, 2, 3] !`) fn new_array_from_c_array_no_alloc(len int, cap int, elm_size int, c_array voidptr) array { arr := array{ element_size: elm_size data: c_array len: len cap: cap } return arr } // Private function. Increases the `cap` of an array to the // required value by copying the data to a new memory location // (creating a clone) unless `a.cap` is already large enough. fn (mut a array) ensure_cap(required int) { if required <= a.cap { return } if a.flags.has(.nogrow) { panic('array.ensure_cap: array with the flag `.nogrow` cannot grow in size, array required new size: ${required}') } mut cap := if a.cap > 0 { a.cap } else { 2 } for required > cap { cap *= 2 } new_size := u64(cap) * u64(a.element_size) new_data := unsafe { malloc(__at_least_one(new_size)) } if a.data != unsafe { nil } { unsafe { vmemcpy(new_data, a.data, u64(a.len) * u64(a.element_size)) } // TODO: the old data may be leaked when no GC is used (ref-counting?) if a.flags.has(.noslices) { unsafe { free(a.data) } } } a.data = new_data a.offset = 0 a.cap = cap } // repeat returns a new array with the given array elements repeated given times. // `cgen` will replace this with an apropriate call to `repeat_to_depth()` // // This is a dummy placeholder that will be overridden by `cgen` with an appropriate // call to `repeat_to_depth()`. However the `checker` needs it here. pub fn (a array) repeat(count int) array { return unsafe { a.repeat_to_depth(count, 0) } } // repeat_to_depth is an unsafe version of `repeat()` that handles // multi-dimensional arrays. // // It is `unsafe` to call directly because `depth` is not checked [direct_array_access; unsafe] pub fn (a array) repeat_to_depth(count int, depth int) array { if count < 0 { panic('array.repeat: count is negative: ${count}') } mut size := u64(count) * u64(a.len) * u64(a.element_size) if size == 0 { size = u64(a.element_size) } arr := array{ element_size: a.element_size data: vcalloc(size) len: count * a.len cap: count * a.len } if a.len > 0 { a_total_size := u64(a.len) * u64(a.element_size) arr_step_size := u64(a.len) * u64(arr.element_size) mut eptr := &u8(arr.data) unsafe { if eptr != nil { for _ in 0 .. count { if depth > 0 { ary_clone := a.clone_to_depth(depth) vmemcpy(eptr, &u8(ary_clone.data), a_total_size) } else { vmemcpy(eptr, &u8(a.data), a_total_size) } eptr += arr_step_size } } } } return arr } // insert inserts a value in the array at index `i` and increases // the index of subsequent elements by 1. // // This function is type-aware and can insert items of the same // or lower dimensionality as the original array. That is, if // the original array is `[]int`, then the insert `val` may be // `int` or `[]int`. If the original array is `[][]int`, then `val` // may be `[]int` or `[][]int`. Consider the examples. // // Example: // ```v // mut a := [1, 2, 4] // a.insert(2, 3) // a now is [1, 2, 3, 4] // mut b := [3, 4] // b.insert(0, [1, 2]) // b now is [1, 2, 3, 4] // mut c := [[3, 4]] // c.insert(0, [1, 2]) // c now is [[1, 2], [3, 4]] // ``` pub fn (mut a array) insert(i int, val voidptr) { $if !no_bounds_checking { if i < 0 || i > a.len { panic('array.insert: index out of range (i == ${i}, a.len == ${a.len})') } } if a.len >= a.cap { a.ensure_cap(a.len + 1) } unsafe { vmemmove(a.get_unsafe(i + 1), a.get_unsafe(i), u64((a.len - i)) * u64(a.element_size)) a.set_unsafe(i, val) } a.len++ } // insert_many is used internally to implement inserting many values // into an the array beginning at `i`. [unsafe] fn (mut a array) insert_many(i int, val voidptr, size int) { $if !no_bounds_checking { if i < 0 || i > a.len { panic('array.insert_many: index out of range (i == ${i}, a.len == ${a.len})') } } a.ensure_cap(a.len + size) elem_size := a.element_size unsafe { iptr := a.get_unsafe(i) vmemmove(a.get_unsafe(i + size), iptr, u64(a.len - i) * u64(elem_size)) vmemcpy(iptr, val, u64(size) * u64(elem_size)) } a.len += size } // prepend prepends one or more elements to an array. // It is shorthand for `.insert(0, val)` pub fn (mut a array) prepend(val voidptr) { a.insert(0, val) } // prepend_many prepends another array to this array. // NOTE: `.prepend` is probably all you need. // NOTE: This code is never called in all of vlib [unsafe] fn (mut a array) prepend_many(val voidptr, size int) { unsafe { a.insert_many(0, val, size) } } // delete deletes array element at index `i`. // This is exactly the same as calling `.delete_many(i, 1)`. // NOTE: This function does NOT operate in-place. Internally, it // creates a copy of the array, skipping over the element at `i`, // and then points the original variable to the new memory location. // // Example: // ```v // mut a := ['0', '1', '2', '3', '4', '5'] // a.delete(1) // a is now ['0', '2', '3', '4', '5'] // ``` pub fn (mut a array) delete(i int) { a.delete_many(i, 1) } // delete_many deletes `size` elements beginning with index `i` // NOTE: This function does NOT operate in-place. Internally, it // creates a copy of the array, skipping over `size` elements // starting at `i`, and then points the original variable // to the new memory location. // // Example: // ```v // mut a := [1, 2, 3, 4, 5, 6, 7, 8, 9] // b := a[..9] // creates a `slice` of `a`, not a clone // a.delete_many(4, 3) // replaces `a` with a modified clone // dump(a) // a: [1, 2, 3, 4, 8, 9] // `a` is now different // dump(b) // b: [1, 2, 3, 4, 5, 6, 7, 8, 9] // `b` is still the same // ``` pub fn (mut a array) delete_many(i int, size int) { $if !no_bounds_checking { if i < 0 || i + size > a.len { endidx := if size > 1 { '..${i + size}' } else { '' } panic('array.delete: index out of range (i == ${i}${endidx}, a.len == ${a.len})') } } if a.flags.all(.noshrink | .noslices) { unsafe { vmemmove(&u8(a.data) + u64(i) * u64(a.element_size), &u8(a.data) + u64(i + size) * u64(a.element_size), u64(a.len - i - size) * u64(a.element_size)) } a.len -= size return } // Note: if a is [12,34], a.len = 2, a.delete(0) // should move (2-0-1) elements = 1 element (the 34) forward old_data := a.data new_size := a.len - size new_cap := if new_size == 0 { 1 } else { new_size } a.data = vcalloc(u64(new_cap) * u64(a.element_size)) unsafe { vmemcpy(a.data, old_data, u64(i) * u64(a.element_size)) } unsafe { vmemcpy(&u8(a.data) + u64(i) * u64(a.element_size), &u8(old_data) + u64(i + size) * u64(a.element_size), u64(a.len - i - size) * u64(a.element_size)) } if a.flags.has(.noslices) { unsafe { free(old_data) } } a.len = new_size a.cap = new_cap } // clear clears the array without deallocating the allocated data. // It does it by setting the array length to `0` // Example: a.clear() // `a.len` is now 0 pub fn (mut a array) clear() { a.len = 0 } // trim trims the array length to `index` without modifying the allocated data. // If `index` is greater than `len` nothing will be changed. // Example: a.trim(3) // `a.len` is now <= 3 pub fn (mut a array) trim(index int) { if index < a.len { a.len = index } } // drop advances the array past the first `num` elements whilst preserving spare capacity. // If `num` is greater than `len` the array will be emptied. // Example: // ```v // mut a := [1,2] // a << 3 // a.drop(2) // assert a == [3] // assert a.cap > a.len // ``` pub fn (mut a array) drop(num int) { if num <= 0 { return } n := if num <= a.len { num } else { a.len } blen := u64(n) * u64(a.element_size) a.data = unsafe { &u8(a.data) + blen } a.offset += int(blen) // TODO: offset should become 64bit as well a.len -= n a.cap -= n } // we manually inline this for single operations for performance without -prod [inline; unsafe] fn (a array) get_unsafe(i int) voidptr { unsafe { return &u8(a.data) + u64(i) * u64(a.element_size) } } // Private function. Used to implement array[] operator. fn (a array) get(i int) voidptr { $if !no_bounds_checking { if i < 0 || i >= a.len { panic('array.get: index out of range (i == ${i}, a.len == ${a.len})') } } unsafe { return &u8(a.data) + u64(i) * u64(a.element_size) } } // Private function. Used to implement x = a[i] or { ... } fn (a array) get_with_check(i int) voidptr { if i < 0 || i >= a.len { return 0 } unsafe { return &u8(a.data) + u64(i) * u64(a.element_size) } } // first returns the first element of the `array`. // If the `array` is empty, this will panic. // However, `a[0]` returns an error object // so it can be handled with an `or` block. pub fn (a array) first() voidptr { $if !no_bounds_checking { if a.len == 0 { panic('array.first: array is empty') } } return a.data } // last returns the last element of the `array`. // If the `array` is empty, this will panic. pub fn (a array) last() voidptr { $if !no_bounds_checking { if a.len == 0 { panic('array.last: array is empty') } } unsafe { return &u8(a.data) + u64(a.len - 1) * u64(a.element_size) } } // pop returns the last element of the array, and removes it. // If the `array` is empty, this will panic. // NOTE: this function reduces the length of the given array, // but arrays sliced from this one will not change. They still // retain their "view" of the underlying memory. // // Example: // ```v // mut a := [1, 2, 3, 4, 5, 6, 7, 8, 9] // b := a[..9] // creates a "view" into the same memory // c := a.pop() // c == 9 // a[1] = 5 // dump(a) // a: [1, 5, 3, 4, 5, 6, 7, 8] // dump(b) // b: [1, 5, 3, 4, 5, 6, 7, 8, 9] // ``` pub fn (mut a array) pop() voidptr { // in a sense, this is the opposite of `a << x` $if !no_bounds_checking { if a.len == 0 { panic('array.pop: array is empty') } } new_len := a.len - 1 last_elem := unsafe { &u8(a.data) + u64(new_len) * u64(a.element_size) } a.len = new_len // Note: a.cap is not changed here *on purpose*, so that // further << ops on that array will be more efficient. return last_elem } // delete_last efficiently deletes the last element of the array. // It does it simply by reducing the length of the array by 1. // If the array is empty, this will panic. // See also: [trim](#array.trim) pub fn (mut a array) delete_last() { // copy pasting code for performance $if !no_bounds_checking { if a.len == 0 { panic('array.pop: array is empty') } } a.len-- } // slice returns an array using the same buffer as original array // but starting from the `start` element and ending with the element before // the `end` element of the original array with the length and capacity // set to the number of the elements in the slice. // It will remain tied to the same memory location until the length increases // (copy on grow) or `.clone()` is called on it. // If `start` and `end` are invalid this function will panic. // Alternative: Slices can also be made with [start..end] notation // Alternative: `.slice_ni()` will always return an array. fn (a array) slice(start int, _end int) array { mut end := _end $if !no_bounds_checking { if start > end { panic('array.slice: invalid slice index (${start} > ${end})') } if end > a.len { panic('array.slice: slice bounds out of range (${end} >= ${a.len})') } if start < 0 { panic('array.slice: slice bounds out of range (${start} < 0)') } } // TODO: integrate reference counting // a.flags.clear(.noslices) offset := u64(start) * u64(a.element_size) data := unsafe { &u8(a.data) + offset } l := end - start res := array{ element_size: a.element_size data: data offset: a.offset + int(offset) // TODO: offset should become 64bit len: l cap: l } return res } // slice_ni returns an array using the same buffer as original array // but starting from the `start` element and ending with the element before // the `end` element of the original array. // This function can use negative indexes `a.slice_ni(-3, a.len)` // that get the last 3 elements of the array otherwise it return an empty array. // This function always return a valid array. fn (a array) slice_ni(_start int, _end int) array { // a.flags.clear(.noslices) mut end := _end mut start := _start if start < 0 { start = a.len + start if start < 0 { start = 0 } } if end < 0 { end = a.len + end if end < 0 { end = 0 } } if end >= a.len { end = a.len } if start >= a.len || start > end { res := array{ element_size: a.element_size data: a.data offset: 0 len: 0 cap: 0 } return res } offset := u64(start) * u64(a.element_size) data := unsafe { &u8(a.data) + offset } l := end - start res := array{ element_size: a.element_size data: data offset: a.offset + int(offset) // TODO: offset should be 64bit len: l cap: l } return res } // used internally for [2..4] fn (a array) slice2(start int, _end int, end_max bool) array { end := if end_max { a.len } else { _end } return a.slice(start, end) } // clone_static_to_depth() returns an independent copy of a given array. // Unlike `clone_to_depth()` it has a value receiver and is used internally // for slice-clone expressions like `a[2..4].clone()` and in -autofree generated code. fn (a array) clone_static_to_depth(depth int) array { return unsafe { a.clone_to_depth(depth) } } // clone returns an independent copy of a given array. // this will be overwritten by `cgen` with an apropriate call to `.clone_to_depth()` // However the `checker` needs it here. pub fn (a &array) clone() array { return unsafe { a.clone_to_depth(0) } } // recursively clone given array - `unsafe` when called directly because depth is not checked [unsafe] pub fn (a &array) clone_to_depth(depth int) array { mut arr := array{ element_size: a.element_size data: vcalloc(u64(a.cap) * u64(a.element_size)) len: a.len cap: a.cap } // Recursively clone-generated elements if array element is array type if depth > 0 && a.element_size == sizeof(array) && a.len >= 0 && a.cap >= a.len { for i in 0 .. a.len { ar := array{} unsafe { vmemcpy(&ar, a.get_unsafe(i), int(sizeof(array))) } ar_clone := unsafe { ar.clone_to_depth(depth - 1) } unsafe { arr.set_unsafe(i, &ar_clone) } } return arr } else { if a.data != 0 { unsafe { vmemcpy(&u8(arr.data), a.data, u64(a.cap) * u64(a.element_size)) } } return arr } } // we manually inline this for single operations for performance without -prod [inline; unsafe] fn (mut a array) set_unsafe(i int, val voidptr) { unsafe { vmemcpy(&u8(a.data) + u64(a.element_size) * u64(i), val, a.element_size) } } // Private function. Used to implement assignment to the array element. fn (mut a array) set(i int, val voidptr) { $if !no_bounds_checking { if i < 0 || i >= a.len { panic('array.set: index out of range (i == ${i}, a.len == ${a.len})') } } unsafe { vmemcpy(&u8(a.data) + u64(a.element_size) * u64(i), val, a.element_size) } } fn (mut a array) push(val voidptr) { if a.len >= a.cap { a.ensure_cap(a.len + 1) } unsafe { vmemcpy(&u8(a.data) + u64(a.element_size) * u64(a.len), val, a.element_size) } a.len++ } // push_many implements the functionality for pushing another array. // `val` is array.data and user facing usage is `a << [1,2,3]` [unsafe] pub fn (mut a3 array) push_many(val voidptr, size int) { if size <= 0 || val == unsafe { nil } { return } a3.ensure_cap(a3.len + size) if a3.data == val && a3.data != 0 { // handle `arr << arr` copy := a3.clone() unsafe { vmemcpy(&u8(a3.data) + u64(a3.element_size) * u64(a3.len), copy.data, u64(a3.element_size) * u64(size)) } } else { if a3.data != 0 && val != 0 { unsafe { vmemcpy(&u8(a3.data) + u64(a3.element_size) * u64(a3.len), val, u64(a3.element_size) * u64(size)) } } } a3.len += size } // reverse_in_place reverses existing array data, modifying original array. pub fn (mut a array) reverse_in_place() { if a.len < 2 || a.element_size == 0 { return } unsafe { mut tmp_value := malloc(a.element_size) for i in 0 .. a.len / 2 { vmemcpy(tmp_value, &u8(a.data) + u64(i) * u64(a.element_size), a.element_size) vmemcpy(&u8(a.data) + u64(i) * u64(a.element_size), &u8(a.data) + u64(a.len - 1 - i) * u64(a.element_size), a.element_size) vmemcpy(&u8(a.data) + u64(a.len - 1 - i) * u64(a.element_size), tmp_value, a.element_size) } free(tmp_value) } } // reverse returns a new array with the elements of the original array in reverse order. pub fn (a array) reverse() array { if a.len < 2 { return a } mut arr := array{ element_size: a.element_size data: vcalloc(u64(a.cap) * u64(a.element_size)) len: a.len cap: a.cap } for i in 0 .. a.len { unsafe { arr.set_unsafe(i, a.get_unsafe(a.len - 1 - i)) } } return arr } // free frees all memory occupied by the array. [unsafe] pub fn (a &array) free() { $if prealloc { return } // if a.is_slice { // return // } if a.flags.has(.nofree) { return } mblock_ptr := &u8(u64(a.data) - u64(a.offset)) unsafe { free(mblock_ptr) } unsafe { a.data = nil } } // Some of the following functions have no implementation in V and exist here // to expose them to the array namespace. Their implementation is compiler // specific because of their use of `it` and `a < b` expressions. // Therefore, the implementation is left to the backend. // filter creates a new array with all elements that pass the test. // Ignore the function signature. `filter` does not take an actual callback. Rather, it // takes an `it` expression. // // Certain array functions (`filter` `any` `all`) support a simplified // domain-specific-language by the backend compiler to make these operations // more idiomatic to V. These functions are described here, but their implementation // is compiler specific. // // Each function takes a boolean test expression as its single argument. // These test expressions may use `it` as a pointer to a single element at a time. // // Example: array.filter(it < 5) // create an array of elements less than 5 // Example: array.filter(it % 2 == 1) // create an array of only odd elements // Example: array.filter(it.name[0] == `A`) // create an array of elements whose `name` field starts with 'A' pub fn (a array) filter(predicate fn (voidptr) bool) array // any tests whether at least one element in the array passes the test. // Ignore the function signature. `any` does not take an actual callback. Rather, it // takes an `it` expression. // It returns `true` if it finds an element passing the test. Otherwise, // it returns `false`. It doesn't modify the array. // // Example: array.any(it % 2 == 1) // will return true if any element is odd // Example: array.any(it.name == 'Bob') // will yield `true` if any element has `.name == 'Bob'` pub fn (a array) any(predicate fn (voidptr) bool) bool // all tests whether all elements in the array pass the test. // Ignore the function signature. `all` does not take an actual callback. Rather, it // takes an `it` expression. // It returns `false` if any element fails the test. Otherwise, // it returns `true`. It doesn't modify the array. // // Example: array.all(it % 2 == 1) // will return true if every element is odd pub fn (a array) all(predicate fn (voidptr) bool) bool // map creates a new array populated with the results of calling a provided function // on every element in the calling array. // It also accepts an `it` expression. // // Example: // ```v // words := ['hello', 'world'] // r1 := words.map(it.to_upper()) // assert r1 == ['HELLO', 'WORLD'] // // // map can also accept anonymous functions // r2 := words.map(fn (w string) string { // return w.to_upper() // }) // assert r2 == ['HELLO', 'WORLD'] // ``` pub fn (a array) map(callback fn (voidptr) voidptr) array // sort sorts the array in place. // Ignore the function signature. Passing a callback to `.sort` is not supported // for now. Consider using the `.sort_with_compare` method if you need it. // // sort can take a boolean test expression as its single argument. // The expression uses 2 'magic' variables `a` and `b` as pointers to the two elements // being compared. // // Example: array.sort() // will sort the array in ascending order // Example: array.sort(b < a) // will sort the array in decending order // Example: array.sort(b.name < a.name) // will sort descending by the .name field pub fn (mut a array) sort(callback fn (voidptr, voidptr) int) // sorted returns a sorted copy of the original array. The original array is *NOT* modified. // See also .sort() . // Example: assert [9,1,6,3,9].sorted() == [1,3,6,9,9] // Example: assert [9,1,6,3,9].sorted(b < a) == [9,9,6,3,1] pub fn (a &array) sorted(callback fn (voidptr, voidptr) int) array // sort_with_compare sorts the array in-place using the results of the // given function to determine sort order. // // The function should return one of three values: // - `-1` when `a` should come before `b` ( `a < b` ) // - `1` when `b` should come before `a` ( `b < a` ) // - `0` when the order cannot be determined ( `a == b` ) // // Example: // ```v // fn main() { // mut a := ['hi', '1', '5', '3'] // a.sort_with_compare(fn (a &string, b &string) int { // if a < b { // return -1 // } // if a > b { // return 1 // } // return 0 // }) // assert a == ['1', '3', '5', 'hi'] // } // ``` pub fn (mut a array) sort_with_compare(callback fn (voidptr, voidptr) int) { $if freestanding { panic('sort_with_compare does not work with -freestanding') } $else { unsafe { vqsort(a.data, usize(a.len), usize(a.element_size), callback) } } } // sorted_with_compare sorts a clone of the array, using the results of the // given function to determine sort order. The original array is not modified. // See also .sort_with_compare() pub fn (a &array) sorted_with_compare(callback fn (voidptr, voidptr) int) array { $if freestanding { panic('sorted_with_compare does not work with -freestanding') } $else { mut r := a.clone() unsafe { vqsort(r.data, usize(r.len), usize(r.element_size), callback) } return r } return array{} } // contains determines whether an array includes a certain value among its elements // It will return `true` if the array contains an element with this value. // It is similar to `.any` but does not take an `it` expression. // // Example: [1, 2, 3].contains(4) == false pub fn (a array) contains(value voidptr) bool // index returns the first index at which a given element can be found in the array // or `-1` if the value is not found. pub fn (a array) index(value voidptr) int [direct_array_access; unsafe] pub fn (mut a []string) free() { $if prealloc { return } for mut s in a { unsafe { s.free() } } unsafe { (&array(&a)).free() } } // The following functions are type-specific functions that apply // to arrays of different types in different ways. // str returns a string representation of an array of strings // Example: ['a', 'b', 'c'].str() // => "['a', 'b', 'c']". [direct_array_access; manualfree] pub fn (a []string) str() string { mut sb_len := 4 // 2x" + 1x, + 1xspace if a.len > 0 { // assume that most strings will be ~large as the first sb_len += a[0].len sb_len *= a.len } sb_len += 2 // 1x[ + 1x] mut sb := strings.new_builder(sb_len) sb.write_u8(`[`) for i in 0 .. a.len { val := a[i] sb.write_u8(`'`) sb.write_string(val) sb.write_u8(`'`) if i < a.len - 1 { sb.write_string(', ') } } sb.write_u8(`]`) res := sb.str() unsafe { sb.free() } return res } // hex returns a string with the hexadecimal representation // of the byte elements of the array. pub fn (b []u8) hex() string { mut hex := unsafe { malloc_noscan(u64(b.len) * 2 + 1) } mut dst_i := 0 for i in b { n0 := i >> 4 unsafe { hex[dst_i] = if n0 < 10 { n0 + `0` } else { n0 + u8(87) } dst_i++ } n1 := i & 0xF unsafe { hex[dst_i] = if n1 < 10 { n1 + `0` } else { n1 + u8(87) } dst_i++ } } unsafe { hex[dst_i] = 0 return tos(hex, dst_i) } } // copy copies the `src` byte array elements to the `dst` byte array. // The number of the elements copied is the minimum of the length of both arrays. // Returns the number of elements copied. // NOTE: This is not an `array` method. It is a function that takes two arrays of bytes. // See also: `arrays.copy`. pub fn copy(mut dst []u8, src []u8) int { min := if dst.len < src.len { dst.len } else { src.len } if min > 0 { unsafe { vmemmove(&u8(dst.data), src.data, min) } } return min } // grow_cap grows the array's capacity by `amount` elements. // Internally, it does this by copying the entire array to // a new memory location (creating a clone). pub fn (mut a array) grow_cap(amount int) { a.ensure_cap(a.cap + amount) } // grow_len ensures that an array has a.len + amount of length // Internally, it does this by copying the entire array to // a new memory location (creating a clone) unless the array.cap // is already large enough. [unsafe] pub fn (mut a array) grow_len(amount int) { a.ensure_cap(a.len + amount) a.len += amount } // pointers returns a new array, where each element // is the address of the corresponding element in the array. [unsafe] pub fn (a array) pointers() []voidptr { mut res := []voidptr{} for i in 0 .. a.len { unsafe { res << a.get_unsafe(i) } } return res } // vbytes on`voidptr` makes a V []u8 structure from a C style memory buffer. // NOTE: the data is reused, NOT copied! [unsafe] pub fn (data voidptr) vbytes(len int) []u8 { res := array{ element_size: 1 data: data len: len cap: len } return res } // vbytes on `&u8` makes a V []u8 structure from a C style memory buffer. // NOTE: the data is reused, NOT copied! [unsafe] pub fn (data &u8) vbytes(len int) []u8 { return unsafe { voidptr(data).vbytes(len) } }