// non-pub versions of array functions // that allocale new memory using `GC_MALLOC_ATOMIC()` // when `-gc boehm_*_opt` is used. These memory areas are not // scanned for pointers. module builtin fn __new_array_noscan(mylen int, cap int, elm_size int) array { cap_ := if cap < mylen { mylen } else { cap } arr := array{ element_size: elm_size data: vcalloc_noscan(u64(cap_) * u64(elm_size)) len: mylen cap: cap_ } return arr } fn __new_array_with_default_noscan(mylen int, cap int, elm_size int, val voidptr) array { cap_ := if cap < mylen { mylen } else { cap } mut arr := array{ element_size: elm_size data: vcalloc_noscan(u64(cap_) * u64(elm_size)) len: mylen cap: cap_ } if val != 0 && arr.data != unsafe { nil } { if elm_size == 1 { byte_value := *(&u8(val)) dptr := &u8(arr.data) for i in 0 .. arr.len { unsafe { dptr[i] = byte_value } } } else { for i in 0 .. arr.len { unsafe { arr.set_unsafe(i, val) } } } } return arr } fn __new_array_with_multi_default_noscan(mylen int, cap int, elm_size int, val voidptr) array { cap_ := if cap < mylen { mylen } else { cap } mut arr := array{ element_size: elm_size data: vcalloc_noscan(u64(cap_) * u64(elm_size)) len: mylen cap: cap_ } if val != 0 && arr.data != unsafe { nil } { for i in 0 .. arr.len { unsafe { arr.set_unsafe(i, charptr(val) + i * elm_size) } } } return arr } fn __new_array_with_array_default_noscan(mylen int, cap int, elm_size int, val array) array { cap_ := if cap < mylen { mylen } else { cap } mut arr := array{ element_size: elm_size data: vcalloc_noscan(u64(cap_) * u64(elm_size)) len: mylen cap: cap_ } for i in 0 .. arr.len { val_clone := val.clone() unsafe { arr.set_unsafe(i, &val_clone) } } return arr } // Private function, used by V (`nums := [1, 2, 3]`) fn new_array_from_c_array_noscan(len int, cap int, elm_size int, c_array voidptr) array { cap_ := if cap < len { len } else { cap } arr := array{ element_size: elm_size data: vcalloc_noscan(u64(cap_) * u64(elm_size)) len: len cap: cap_ } // TODO Write all memory functions (like memcpy) in V unsafe { vmemcpy(arr.data, c_array, u64(len) * u64(elm_size)) } return arr } // Private function. Doubles array capacity if needed. fn (mut a array) ensure_cap_noscan(required int) { if required <= a.cap { return } if a.flags.has(.nogrow) { panic('array.ensure_cap_noscan: array with the flag `.nogrow` cannot grow in size, array required new size: ${required}') } mut cap := if a.cap > 0 { a.cap } else { 2 } for required > cap { cap *= 2 } new_size := u64(cap) * u64(a.element_size) new_data := vcalloc_noscan(new_size) if a.data != unsafe { nil } { unsafe { vmemcpy(new_data, a.data, u64(a.len) * u64(a.element_size)) } // TODO: the old data may be leaked when no GC is used (ref-counting?) } a.data = new_data a.offset = 0 a.cap = cap } // repeat returns a new array with the given array elements repeated given times. // `cgen` will replace this with an apropriate call to `repeat_to_depth()` // version of `repeat()` that handles multi dimensional arrays // `unsafe` to call directly because `depth` is not checked [unsafe] fn (a array) repeat_to_depth_noscan(count int, depth int) array { if count < 0 { panic('array.repeat: count is negative: ${count}') } mut size := u64(count) * u64(a.len) * u64(a.element_size) if size == 0 { size = u64(a.element_size) } arr := array{ element_size: a.element_size data: if depth > 0 { vcalloc(size) } else { vcalloc_noscan(size) } len: count * a.len cap: count * a.len } if a.len > 0 { a_total_size := u64(a.len) * u64(a.element_size) arr_step_size := u64(a.len) * u64(arr.element_size) mut eptr := &u8(arr.data) unsafe { for _ in 0 .. count { if depth > 0 { ary_clone := a.clone_to_depth_noscan(depth) vmemcpy(eptr, &u8(ary_clone.data), a_total_size) } else { vmemcpy(eptr, &u8(a.data), a_total_size) } eptr += arr_step_size } } } return arr } // insert inserts a value in the array at index `i` fn (mut a array) insert_noscan(i int, val voidptr) { $if !no_bounds_checking { if i < 0 || i > a.len { panic('array.insert: index out of range (i == ${i}, a.len == ${a.len})') } } a.ensure_cap_noscan(a.len + 1) unsafe { vmemmove(a.get_unsafe(i + 1), a.get_unsafe(i), u64(a.len - i) * u64(a.element_size)) a.set_unsafe(i, val) } a.len++ } // insert_many inserts many values into the array from index `i`. [unsafe] fn (mut a array) insert_many_noscan(i int, val voidptr, size int) { $if !no_bounds_checking { if i < 0 || i > a.len { panic('array.insert_many: index out of range (i == ${i}, a.len == ${a.len})') } } a.ensure_cap_noscan(a.len + size) elem_size := a.element_size unsafe { iptr := a.get_unsafe(i) vmemmove(a.get_unsafe(i + size), iptr, u64(a.len - i) * u64(elem_size)) vmemcpy(iptr, val, u64(size) * u64(elem_size)) } a.len += size } // prepend prepends one value to the array. fn (mut a array) prepend_noscan(val voidptr) { a.insert_noscan(0, val) } // prepend_many prepends another array to this array. [unsafe] fn (mut a array) prepend_many_noscan(val voidptr, size int) { unsafe { a.insert_many_noscan(0, val, size) } } // pop returns the last element of the array, and removes it. fn (mut a array) pop_noscan() voidptr { // in a sense, this is the opposite of `a << x` $if !no_bounds_checking { if a.len == 0 { panic('array.pop: array is empty') } } new_len := a.len - 1 last_elem := unsafe { &u8(a.data) + u64(new_len) * u64(a.element_size) } a.len = new_len // Note: a.cap is not changed here *on purpose*, so that // further << ops on that array will be more efficient. return unsafe { memdup_noscan(last_elem, a.element_size) } } // `clone_static_to_depth_noscan()` returns an independent copy of a given array. // Unlike `clone_to_depth_noscan()` it has a value receiver and is used internally // for slice-clone expressions like `a[2..4].clone()` and in -autofree generated code. fn (a array) clone_static_to_depth_noscan(depth int) array { return unsafe { a.clone_to_depth_noscan(depth) } } // recursively clone given array - `unsafe` when called directly because depth is not checked [unsafe] fn (a &array) clone_to_depth_noscan(depth int) array { mut size := u64(a.cap) * u64(a.element_size) if size == 0 { size++ } mut arr := array{ element_size: a.element_size data: if depth == 0 { vcalloc_noscan(size) } else { vcalloc(size) } len: a.len cap: a.cap } // Recursively clone-generated elements if array element is array type if depth > 0 { for i in 0 .. a.len { ar := array{} unsafe { vmemcpy(&ar, a.get_unsafe(i), int(sizeof(array))) } ar_clone := unsafe { ar.clone_to_depth_noscan(depth - 1) } unsafe { arr.set_unsafe(i, &ar_clone) } } return arr } else { if a.data != 0 { unsafe { vmemcpy(&u8(arr.data), a.data, u64(a.cap) * u64(a.element_size)) } } return arr } } fn (mut a array) push_noscan(val voidptr) { a.ensure_cap_noscan(a.len + 1) unsafe { vmemcpy(&u8(a.data) + u64(a.element_size) * u64(a.len), val, a.element_size) } a.len++ } // push_many implements the functionality for pushing another array. // `val` is array.data and user facing usage is `a << [1,2,3]` [unsafe] fn (mut a3 array) push_many_noscan(val voidptr, size int) { if size <= 0 || val == unsafe { nil } { return } if a3.data == val && a3.data != 0 { // handle `arr << arr` copy := a3.clone() a3.ensure_cap_noscan(a3.len + size) unsafe { vmemcpy(a3.get_unsafe(a3.len), copy.data, u64(a3.element_size) * u64(size)) } } else { a3.ensure_cap_noscan(a3.len + size) if a3.data != 0 && val != 0 { unsafe { vmemcpy(a3.get_unsafe(a3.len), val, u64(a3.element_size) * u64(size)) } } } a3.len += size } // reverse returns a new array with the elements of the original array in reverse order. fn (a array) reverse_noscan() array { if a.len < 2 { return a } mut arr := array{ element_size: a.element_size data: vcalloc_noscan(u64(a.cap) * u64(a.element_size)) len: a.len cap: a.cap } for i in 0 .. a.len { unsafe { arr.set_unsafe(i, a.get_unsafe(a.len - 1 - i)) } } return arr } // grow_cap grows the array's capacity by `amount` elements. fn (mut a array) grow_cap_noscan(amount int) { a.ensure_cap_noscan(a.cap + amount) } // grow_len ensures that an array has a.len + amount of length [unsafe] fn (mut a array) grow_len_noscan(amount int) { a.ensure_cap_noscan(a.len + amount) a.len += amount }