[has_globals] module builtin type FnExitCb = fn () fn C.atexit(f FnExitCb) int fn C.strerror(int) &char [noreturn] fn vhalt() { for {} } [markused] fn v_segmentation_fault_handler(signal_number int) { $if freestanding { eprintln('signal 11: segmentation fault') } $else { C.fprintf(C.stderr, c'signal %d: segmentation fault\n', signal_number) } $if use_libbacktrace ? { eprint_libbacktrace(1) } $else { print_backtrace() } exit(128 + signal_number) } // exit terminates execution immediately and returns exit `code` to the shell. [noreturn] pub fn exit(code int) { C.exit(code) } fn vcommithash() string { return unsafe { tos5(&char(C.V_CURRENT_COMMIT_HASH)) } } // panic_debug private function that V uses for panics, -cg/-g is passed // recent versions of tcc print nicer backtraces automatically // Note: the duplication here is because tcc_backtrace should be called directly // inside the panic functions. [noreturn] fn panic_debug(line_no int, file string, mod string, fn_name string, s string) { // Note: the order here is important for a stabler test output // module is less likely to change than function, etc... // During edits, the line number will change most frequently, // so it is last $if freestanding { bare_panic(s) } $else { eprintln('================ V panic ================') eprintln(' module: ${mod}') eprintln(' function: ${fn_name}()') eprintln(' message: ${s}') eprintln(' file: ${file}:${line_no}') eprintln(' v hash: ${vcommithash()}') eprintln('=========================================') $if exit_after_panic_message ? { C.exit(1) } $else $if no_backtrace ? { C.exit(1) } $else { $if tinyc { $if panics_break_into_debugger ? { break_if_debugger_attached() } $else { C.tcc_backtrace(c'Backtrace') } C.exit(1) } $if use_libbacktrace ? { eprint_libbacktrace(1) } $else { print_backtrace_skipping_top_frames(1) } $if panics_break_into_debugger ? { break_if_debugger_attached() } C.exit(1) } } vhalt() } // panic_option_not_set is called by V, when you use option error propagation in your main function. // It ends the program with a panic. [noreturn] pub fn panic_option_not_set(s string) { panic('option not set (${s})') } // panic_result_not_set is called by V, when you use result error propagation in your main function // It ends the program with a panic. [noreturn] pub fn panic_result_not_set(s string) { panic('result not set (${s})') } // panic prints a nice error message, then exits the process with exit code of 1. // It also shows a backtrace on most platforms. [noreturn] pub fn panic(s string) { $if freestanding { bare_panic(s) } $else { eprint('V panic: ') eprintln(s) eprintln('v hash: ${vcommithash()}') $if exit_after_panic_message ? { C.exit(1) } $else $if no_backtrace ? { C.exit(1) } $else { $if tinyc { $if panics_break_into_debugger ? { break_if_debugger_attached() } $else { C.tcc_backtrace(c'Backtrace') } C.exit(1) } $if use_libbacktrace ? { eprint_libbacktrace(1) } $else { print_backtrace_skipping_top_frames(1) } $if panics_break_into_debugger ? { break_if_debugger_attached() } C.exit(1) } } vhalt() } // return a C-API error message matching to `errnum` pub fn c_error_number_str(errnum int) string { mut err_msg := '' $if freestanding { err_msg = 'error ${errnum}' } $else { $if !vinix { c_msg := C.strerror(errnum) err_msg = string{ str: &u8(c_msg) len: unsafe { C.strlen(c_msg) } is_lit: 1 } } } return err_msg } // panic with a C-API error message matching `errnum` [noreturn] pub fn panic_error_number(basestr string, errnum int) { panic(basestr + c_error_number_str(errnum)) } // eprintln prints a message with a line end, to stderr. Both stderr and stdout are flushed. pub fn eprintln(s string) { if s.str == 0 { eprintln('eprintln(NIL)') return } $if freestanding { // flushing is only a thing with C.FILE from stdio.h, not on the syscall level bare_eprint(s.str, u64(s.len)) bare_eprint(c'\n', 1) } $else $if ios { C.WrappedNSLog(s.str) } $else { C.fflush(C.stdout) C.fflush(C.stderr) // eprintln is used in panics, so it should not fail at all $if android && !termux { C.android_print(C.stderr, c'%.*s\n', s.len, s.str) } _writeln_to_fd(2, s) C.fflush(C.stderr) } } // eprint prints a message to stderr. Both stderr and stdout are flushed. pub fn eprint(s string) { if s.str == 0 { eprint('eprint(NIL)') return } $if freestanding { // flushing is only a thing with C.FILE from stdio.h, not on the syscall level bare_eprint(s.str, u64(s.len)) } $else $if ios { // TODO: Implement a buffer as NSLog doesn't have a "print" C.WrappedNSLog(s.str) } $else { C.fflush(C.stdout) C.fflush(C.stderr) $if android && !termux { C.android_print(C.stderr, c'%.*s', s.len, s.str) } _write_buf_to_fd(2, s.str, s.len) C.fflush(C.stderr) } } pub fn flush_stdout() { $if freestanding { not_implemented := 'flush_stdout is not implemented\n' bare_eprint(not_implemented.str, u64(not_implemented.len)) } $else { C.fflush(C.stdout) } } pub fn flush_stderr() { $if freestanding { not_implemented := 'flush_stderr is not implemented\n' bare_eprint(not_implemented.str, u64(not_implemented.len)) } $else { C.fflush(C.stderr) } } // print prints a message to stdout. Note that unlike `eprint`, stdout is not automatically flushed. [manualfree] pub fn print(s string) { $if android && !termux { C.android_print(C.stdout, c'%.*s\n', s.len, s.str) } $else $if ios { // TODO: Implement a buffer as NSLog doesn't have a "print" C.WrappedNSLog(s.str) } $else $if freestanding { bare_print(s.str, u64(s.len)) } $else { _write_buf_to_fd(1, s.str, s.len) } } // println prints a message with a line end, to stdout. Note that unlike `eprintln`, stdout is not automatically flushed. [manualfree] pub fn println(s string) { if s.str == 0 { println('println(NIL)') return } $if android && !termux { C.android_print(C.stdout, c'%.*s\n', s.len, s.str) return } $else $if ios { C.WrappedNSLog(s.str) return } $else $if freestanding { bare_print(s.str, u64(s.len)) bare_print(c'\n', 1) return } $else { _writeln_to_fd(1, s) } } [manualfree] fn _writeln_to_fd(fd int, s string) { $if !bultin_writeln_should_write_at_once ? { lf := u8(`\n`) _write_buf_to_fd(fd, s.str, s.len) _write_buf_to_fd(fd, &lf, 1) return } unsafe { buf_len := s.len + 1 // space for \n mut buf := malloc(buf_len) defer { free(buf) } C.memcpy(buf, s.str, s.len) buf[s.len] = `\n` _write_buf_to_fd(fd, buf, buf_len) } } [manualfree] fn _write_buf_to_fd(fd int, buf &u8, buf_len int) { if buf_len <= 0 { return } mut ptr := unsafe { buf } mut remaining_bytes := isize(buf_len) mut x := isize(0) $if freestanding || vinix || bultin_write_buf_to_fd_should_use_c_write ? { unsafe { for remaining_bytes > 0 { x = C.write(fd, ptr, remaining_bytes) ptr += x remaining_bytes -= x } } } $else { mut stream := voidptr(C.stdout) if fd == 2 { stream = voidptr(C.stderr) } unsafe { for remaining_bytes > 0 { x = isize(C.fwrite(ptr, 1, remaining_bytes, stream)) ptr += x remaining_bytes -= x } } } } __global total_m = i64(0) // malloc dynamically allocates a `n` bytes block of memory on the heap. // malloc returns a `byteptr` pointing to the memory address of the allocated space. // unlike the `calloc` family of functions - malloc will not zero the memory block. [unsafe] pub fn malloc(n isize) &u8 { $if trace_malloc ? { total_m += n C.fprintf(C.stderr, c'_v_malloc %6d total %10d\n', n, total_m) // print_backtrace() } if n < 0 { panic('malloc(${n} < 0)') } $if vplayground ? { if n > 10000 { panic('allocating more than 10 KB at once is not allowed in the V playground') } if total_m > 50 * 1024 * 1024 { panic('allocating more than 50 MB is not allowed in the V playground') } } mut res := &u8(0) $if prealloc { return unsafe { prealloc_malloc(n) } } $else $if gcboehm ? { unsafe { res = C.GC_MALLOC(n) } } $else $if freestanding { // todo: is this safe to call malloc there? We export __malloc as malloc and it uses dlmalloc behind the scenes // so theoretically it is safe res = unsafe { __malloc(usize(n)) } } $else { res = unsafe { C.malloc(n) } } if res == 0 { panic('malloc(${n}) failed') } $if debug_malloc ? { // Fill in the memory with something != 0 i.e. `M`, so it is easier to spot // when the calling code wrongly relies on it being zeroed. unsafe { C.memset(res, 0x4D, n) } } return res } [unsafe] pub fn malloc_noscan(n isize) &u8 { $if trace_malloc ? { total_m += n C.fprintf(C.stderr, c'malloc_noscan %6d total %10d\n', n, total_m) // print_backtrace() } if n < 0 { panic('malloc_noscan(${n} < 0)') } $if vplayground ? { if n > 10000 { panic('allocating more than 10 KB at once is not allowed in the V playground') } if total_m > 50 * 1024 * 1024 { panic('allocating more than 50 MB is not allowed in the V playground') } } mut res := &u8(0) $if prealloc { return unsafe { prealloc_malloc(n) } } $else $if gcboehm ? { $if gcboehm_opt ? { unsafe { res = C.GC_MALLOC_ATOMIC(n) } } $else { unsafe { res = C.GC_MALLOC(n) } } } $else $if freestanding { res = unsafe { __malloc(usize(n)) } } $else { res = unsafe { C.malloc(n) } } if res == 0 { panic('malloc_noscan(${n}) failed') } $if debug_malloc ? { // Fill in the memory with something != 0 i.e. `M`, so it is easier to spot // when the calling code wrongly relies on it being zeroed. unsafe { C.memset(res, 0x4D, n) } } return res } [inline] fn __at_least_one(how_many u64) u64 { // handle the case for allocating memory for empty structs, which have sizeof(EmptyStruct) == 0 // in this case, just allocate a single byte, avoiding the panic for malloc(0) if how_many == 0 { return 1 } return how_many } // malloc_uncollectable dynamically allocates a `n` bytes block of memory // on the heap, which will NOT be garbage-collected (but its contents will). [unsafe] pub fn malloc_uncollectable(n isize) &u8 { $if trace_malloc ? { total_m += n C.fprintf(C.stderr, c'malloc_uncollectable %6d total %10d\n', n, total_m) // print_backtrace() } if n < 0 { panic('malloc_uncollectable(${n} < 0)') } $if vplayground ? { if n > 10000 { panic('allocating more than 10 KB at once is not allowed in the V playground') } if total_m > 50 * 1024 * 1024 { panic('allocating more than 50 MB is not allowed in the V playground') } } mut res := &u8(0) $if prealloc { return unsafe { prealloc_malloc(n) } } $else $if gcboehm ? { unsafe { res = C.GC_MALLOC_UNCOLLECTABLE(n) } } $else $if freestanding { res = unsafe { __malloc(usize(n)) } } $else { res = unsafe { C.malloc(n) } } if res == 0 { panic('malloc_uncollectable(${n}) failed') } $if debug_malloc ? { // Fill in the memory with something != 0 i.e. `M`, so it is easier to spot // when the calling code wrongly relies on it being zeroed. unsafe { C.memset(res, 0x4D, n) } } return res } // v_realloc resizes the memory block `b` with `n` bytes. // The `b byteptr` must be a pointer to an existing memory block // previously allocated with `malloc`, `v_calloc` or `vcalloc`. // Please, see also realloc_data, and use it instead if possible. [unsafe] pub fn v_realloc(b &u8, n isize) &u8 { $if trace_realloc ? { C.fprintf(C.stderr, c'v_realloc %6d\n', n) } mut new_ptr := &u8(0) $if prealloc { unsafe { new_ptr = malloc(n) C.memcpy(new_ptr, b, n) } return new_ptr } $else $if gcboehm ? { new_ptr = unsafe { C.GC_REALLOC(b, n) } } $else { new_ptr = unsafe { C.realloc(b, n) } } if new_ptr == 0 { panic('realloc(${n}) failed') } return new_ptr } // realloc_data resizes the memory block pointed by `old_data` to `new_size` // bytes. `old_data` must be a pointer to an existing memory block, previously // allocated with `malloc`, `v_calloc` or `vcalloc`, of size `old_data`. // realloc_data returns a pointer to the new location of the block. // Note: if you know the old data size, it is preferable to call `realloc_data`, // instead of `v_realloc`, at least during development, because `realloc_data` // can make debugging easier, when you compile your program with // `-d debug_realloc`. [unsafe] pub fn realloc_data(old_data &u8, old_size int, new_size int) &u8 { $if trace_realloc ? { C.fprintf(C.stderr, c'realloc_data old_size: %6d new_size: %6d\n', old_size, new_size) } $if prealloc { return unsafe { prealloc_realloc(old_data, old_size, new_size) } } $if debug_realloc ? { // Note: this is slower, but helps debugging memory problems. // The main idea is to always force reallocating: // 1) allocate a new memory block // 2) copy the old to the new // 3) fill the old with 0x57 (`W`) // 4) free the old block // => if there is still a pointer to the old block somewhere // it will point to memory that is now filled with 0x57. unsafe { new_ptr := malloc(new_size) min_size := if old_size < new_size { old_size } else { new_size } C.memcpy(new_ptr, old_data, min_size) C.memset(old_data, 0x57, old_size) free(old_data) return new_ptr } } mut nptr := &u8(0) $if gcboehm ? { nptr = unsafe { C.GC_REALLOC(old_data, new_size) } } $else { nptr = unsafe { C.realloc(old_data, new_size) } } if nptr == 0 { panic('realloc_data(${old_data}, ${old_size}, ${new_size}) failed') } return nptr } // vcalloc dynamically allocates a zeroed `n` bytes block of memory on the heap. // vcalloc returns a `byteptr` pointing to the memory address of the allocated space. // Unlike `v_calloc` vcalloc checks for negative values given in `n`. pub fn vcalloc(n isize) &u8 { $if trace_vcalloc ? { total_m += n C.fprintf(C.stderr, c'vcalloc %6d total %10d\n', n, total_m) } if n < 0 { panic('calloc(${n} < 0)') } else if n == 0 { return &u8(0) } $if prealloc { return unsafe { prealloc_calloc(n) } } $else $if gcboehm ? { return unsafe { &u8(C.GC_MALLOC(n)) } } $else { return unsafe { C.calloc(1, n) } } } // special versions of the above that allocate memory which is not scanned // for pointers (but is collected) when the Boehm garbage collection is used pub fn vcalloc_noscan(n isize) &u8 { $if trace_vcalloc ? { total_m += n C.fprintf(C.stderr, c'vcalloc_noscan %6d total %10d\n', n, total_m) } $if prealloc { return unsafe { prealloc_calloc(n) } } $else $if gcboehm ? { $if vplayground ? { if n > 10000 { panic('allocating more than 10 KB is not allowed in the playground') } } if n < 0 { panic('calloc_noscan(${n} < 0)') } return $if gcboehm_opt ? { unsafe { &u8(C.memset(C.GC_MALLOC_ATOMIC(n), 0, n)) } } $else { unsafe { &u8(C.GC_MALLOC(n)) } } } $else { return unsafe { vcalloc(n) } } } // free allows for manually freeing memory allocated at the address `ptr`. [unsafe] pub fn free(ptr voidptr) { $if prealloc { return } $else $if gcboehm ? { // It is generally better to leave it to Boehm's gc to free things. // Calling C.GC_FREE(ptr) was tried initially, but does not work // well with programs that do manual management themselves. // // The exception is doing leak detection for manual memory management: $if gcboehm_leak ? { unsafe { C.GC_FREE(ptr) } } } $else { C.free(ptr) } } // memdup dynamically allocates a `sz` bytes block of memory on the heap // memdup then copies the contents of `src` into the allocated space and // returns a pointer to the newly allocated space. [unsafe] pub fn memdup(src voidptr, sz int) voidptr { $if trace_memdup ? { C.fprintf(C.stderr, c'memdup size: %10d\n', sz) } if sz == 0 { return vcalloc(1) } unsafe { mem := malloc(sz) return C.memcpy(mem, src, sz) } } [unsafe] pub fn memdup_noscan(src voidptr, sz int) voidptr { $if trace_memdup ? { C.fprintf(C.stderr, c'memdup_noscan size: %10d\n', sz) } if sz == 0 { return vcalloc_noscan(1) } unsafe { mem := malloc_noscan(sz) return C.memcpy(mem, src, sz) } } // memdup_uncollectable dynamically allocates a `sz` bytes block of memory // on the heap, which will NOT be garbage-collected (but its contents will). // memdup_uncollectable then copies the contents of `src` into the allocated // space and returns a pointer to the newly allocated space. [unsafe] pub fn memdup_uncollectable(src voidptr, sz int) voidptr { $if trace_memdup ? { C.fprintf(C.stderr, c'memdup_uncollectable size: %10d\n', sz) } if sz == 0 { return vcalloc(1) } unsafe { mem := malloc_uncollectable(sz) return C.memcpy(mem, src, sz) } } pub struct GCHeapUsage { pub: heap_size usize free_bytes usize total_bytes usize unmapped_bytes usize bytes_since_gc usize } // gc_heap_usage returns the info about heap usage pub fn gc_heap_usage() GCHeapUsage { $if gcboehm ? { mut res := GCHeapUsage{} C.GC_get_heap_usage_safe(&res.heap_size, &res.free_bytes, &res.unmapped_bytes, &res.bytes_since_gc, &res.total_bytes) return res } $else { return GCHeapUsage{} } } // gc_memory_use returns the total memory use in bytes by all allocated blocks pub fn gc_memory_use() usize { $if gcboehm ? { return C.GC_get_memory_use() } $else { return 0 } } [inline] fn v_fixed_index(i int, len int) int { $if !no_bounds_checking { if i < 0 || i >= len { s := 'fixed array index out of range (index: ${i}, len: ${len})' panic(s) } } return i } // print_backtrace shows a backtrace of the current call stack on stdout pub fn print_backtrace() { // At the time of backtrace_symbols_fd call, the C stack would look something like this: // * print_backtrace_skipping_top_frames // * print_backtrace itself // * the rest of the backtrace frames // => top 2 frames should be skipped, since they will not be informative to the developer $if !no_backtrace ? { $if freestanding { println(bare_backtrace()) } $else { $if tinyc { C.tcc_backtrace(c'Backtrace') } $else { // NOTE: TCC doesn't have the unwind library $if use_libbacktrace ? { print_libbacktrace(1) } $else { print_backtrace_skipping_top_frames(2) } } } } } // NOTE: g_main_argc and g_main_argv are filled in right after C's main start. // They are used internally by V's builtin; for user code, it is much // more convenient to just use `os.args` instead. [markused] __global g_main_argc = int(0) [markused] __global g_main_argv = unsafe { nil }