// Copyright (c) 2019-2023 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license that can be found in the LICENSE file. module builtin // TODO implement compile time conditional include // [if !nofloat] import strconv #include /* ----------------------------------- ----- f64 to string functions ----- */ // str return a `f64` as `string` in suitable notation. [inline] pub fn (x f64) str() string { unsafe { f := strconv.Float64u{ f: x } if f.u == strconv.double_minus_zero { return '-0.0' } if f.u == strconv.double_plus_zero { return '0.0' } } abs_x := f64_abs(x) if abs_x >= 0.0001 && abs_x < 1.0e6 { return strconv.f64_to_str_l(x) } else { return strconv.ftoa_64(x) } } // strg return a `f64` as `string` in "g" printf format [inline] pub fn (x f64) strg() string { if x == 0 { return '0.0' } abs_x := f64_abs(x) if abs_x >= 0.0001 && abs_x < 1.0e6 { return strconv.f64_to_str_l_with_dot(x) } else { return strconv.ftoa_64(x) } } // str returns the value of the `float_literal` as a `string`. [inline] pub fn (d float_literal) str() string { return f64(d).str() } // strsci returns the `f64` as a `string` in scientific notation with `digit_num` decimals displayed, max 17 digits. // Example: assert f64(1.234).strsci(3) == '1.234e+00' [inline] pub fn (x f64) strsci(digit_num int) string { mut n_digit := digit_num if n_digit < 1 { n_digit = 1 } else if n_digit > 17 { n_digit = 17 } return strconv.f64_to_str(x, n_digit) } // strlong returns a decimal notation of the `f64` as a `string`. // Example: assert f64(1.23456).strlong() == '1.23456' [inline] pub fn (x f64) strlong() string { return strconv.f64_to_str_l(x) } /* ----------------------------------- ----- f32 to string functions ----- */ // str returns a `f32` as `string` in suitable notation. [inline] pub fn (x f32) str() string { unsafe { f := strconv.Float32u{ f: x } if f.u == strconv.single_minus_zero { return '-0.0' } if f.u == strconv.single_plus_zero { return '0.0' } } abs_x := f32_abs(x) if abs_x >= 0.0001 && abs_x < 1.0e6 { return strconv.f32_to_str_l(x) } else { return strconv.ftoa_32(x) } } // strg return a `f32` as `string` in "g" printf format [inline] pub fn (x f32) strg() string { if x == 0 { return '0.0' } abs_x := f32_abs(x) if abs_x >= 0.0001 && abs_x < 1.0e6 { return strconv.f32_to_str_l_with_dot(x) } else { return strconv.ftoa_32(x) } } // strsci returns the `f32` as a `string` in scientific notation with `digit_num` decimals displayed, max 8 digits. // Example: assert f32(1.234).strsci(3) == '1.234e+00' [inline] pub fn (x f32) strsci(digit_num int) string { mut n_digit := digit_num if n_digit < 1 { n_digit = 1 } else if n_digit > 8 { n_digit = 8 } return strconv.f32_to_str(x, n_digit) } // strlong returns a decimal notation of the `f32` as a `string`. [inline] pub fn (x f32) strlong() string { return strconv.f32_to_str_l(x) } /* ----------------------- ----- C functions ----- */ // f32_abs returns the absolute value of `a` as a `f32` value. // Example: assert f32_abs(-2.0) == 2.0 [inline] pub fn f32_abs(a f32) f32 { return if a < 0 { -a } else { a } } // f64_abs returns the absolute value of `a` as a `f64` value. // Example: assert f64_abs(-2.0) == f64(2.0) [inline] fn f64_abs(a f64) f64 { return if a < 0 { -a } else { a } } // f32_max returns the largest `f32` of input `a` and `b`. // Example: assert f32_max(2.0,3.0) == 3.0 [inline] pub fn f32_max(a f32, b f32) f32 { return if a > b { a } else { b } } // f32_min returns the smallest `f32` of input `a` and `b`. // Example: assert f32_min(2.0,3.0) == 2.0 [inline] pub fn f32_min(a f32, b f32) f32 { return if a < b { a } else { b } } // f64_max returns the largest `f64` of input `a` and `b`. // Example: assert f64_max(2.0,3.0) == 3.0 [inline] pub fn f64_max(a f64, b f64) f64 { return if a > b { a } else { b } } // f64_min returns the smallest `f64` of input `a` and `b`. // Example: assert f64_min(2.0,3.0) == 2.0 [inline] fn f64_min(a f64, b f64) f64 { return if a < b { a } else { b } } // eq_epsilon returns true if the `f32` is equal to input `b`. // using an epsilon of typically 1E-5 or higher (backend/compiler dependent). // Example: assert f32(2.0).eq_epsilon(2.0) [inline] pub fn (a f32) eq_epsilon(b f32) bool { hi := f32_max(f32_abs(a), f32_abs(b)) delta := f32_abs(a - b) if hi > f32(1.0) { return delta <= hi * (4 * f32(C.FLT_EPSILON)) } else { return (1 / (4 * f32(C.FLT_EPSILON))) * delta <= hi } } // eq_epsilon returns true if the `f64` is equal to input `b`. // using an epsilon of typically 1E-9 or higher (backend/compiler dependent). // Example: assert f64(2.0).eq_epsilon(2.0) [inline] pub fn (a f64) eq_epsilon(b f64) bool { hi := f64_max(f64_abs(a), f64_abs(b)) delta := f64_abs(a - b) if hi > 1.0 { return delta <= hi * (4 * f64(C.DBL_EPSILON)) } else { return (1 / (4 * f64(C.DBL_EPSILON))) * delta <= hi } }