module math // factorial calculates the factorial of the provided value. pub fn factorial(n f64) f64 { // For a large positive argument (n >= factorials_table.len) return max_f64 if n >= factorials_table.len { return max_f64 } // Otherwise return n!. if n == f64(i64(n)) && n >= 0.0 { return factorials_table[i64(n)] } return gamma(n + 1.0) } // log_factorial calculates the log-factorial of the provided value. pub fn log_factorial(n f64) f64 { // For a large positive argument (n < 0) return max_f64 if n < 0 { return -max_f64 } // If n < N then return ln(n!). if n != f64(i64(n)) { return log_gamma(n + 1) } else if n < log_factorials_table.len { return log_factorials_table[i64(n)] } // Otherwise return asymptotic expansion of ln(n!). return log_factorial_asymptotic_expansion(int(n)) } fn log_factorial_asymptotic_expansion(n int) f64 { m := 6 mut term := []f64{} xx := f64((n + 1) * (n + 1)) mut xj := f64(n + 1) log_factorial := log_sqrt_2pi - xj + (xj - 0.5) * log(xj) mut i := 0 for i = 0; i < m; i++ { term << bernoulli[i] / xj xj *= xx } mut sum := term[m - 1] for i = m - 2; i >= 0; i-- { if abs(sum) <= abs(term[i]) { break } sum = term[i] } for i >= 0 { sum += term[i] i-- } return log_factorial + sum } // factoriali returns 1 for n <= 0 and -1 if the result is too large for a 64 bit integer pub fn factoriali(n int) i64 { if n <= 0 { return i64(1) } if n < 21 { return i64(factorials_table[n]) } return i64(-1) }