module strconv import math.bits // general utilities // General Utilities [if debug_strconv ?] fn assert1(t bool, msg string) { if !t { panic(msg) } } [inline] fn bool_to_int(b bool) int { if b { return 1 } return 0 } [inline] fn bool_to_u32(b bool) u32 { if b { return u32(1) } return u32(0) } [inline] fn bool_to_u64(b bool) u64 { if b { return u64(1) } return u64(0) } fn get_string_special(neg bool, expZero bool, mantZero bool) string { if !mantZero { return 'nan' } if !expZero { if neg { return '-inf' } else { return '+inf' } } if neg { return '-0e+00' } return '0e+00' } /* 32 bit functions */ fn mul_shift_32(m u32, mul u64, ishift int) u32 { // QTODO // assert ishift > 32 hi, lo := bits.mul_64(u64(m), mul) shifted_sum := (lo >> u64(ishift)) + (hi << u64(64 - ishift)) assert1(shifted_sum <= 2147483647, 'shiftedSum <= math.max_u32') return u32(shifted_sum) } fn mul_pow5_invdiv_pow2(m u32, q u32, j int) u32 { return mul_shift_32(m, pow5_inv_split_32[q], j) } fn mul_pow5_div_pow2(m u32, i u32, j int) u32 { return mul_shift_32(m, pow5_split_32[i], j) } fn pow5_factor_32(i_v u32) u32 { mut v := i_v for n := u32(0); true; n++ { q := v / 5 r := v % 5 if r != 0 { return n } v = q } return v } // multiple_of_power_of_five_32 reports whether v is divisible by 5^p. fn multiple_of_power_of_five_32(v u32, p u32) bool { return pow5_factor_32(v) >= p } // multiple_of_power_of_two_32 reports whether v is divisible by 2^p. fn multiple_of_power_of_two_32(v u32, p u32) bool { return u32(bits.trailing_zeros_32(v)) >= p } // log10_pow2 returns floor(log_10(2^e)). fn log10_pow2(e int) u32 { // The first value this approximation fails for is 2^1651 // which is just greater than 10^297. assert1(e >= 0, 'e >= 0') assert1(e <= 1650, 'e <= 1650') return (u32(e) * 78913) >> 18 } // log10_pow5 returns floor(log_10(5^e)). fn log10_pow5(e int) u32 { // The first value this approximation fails for is 5^2621 // which is just greater than 10^1832. assert1(e >= 0, 'e >= 0') assert1(e <= 2620, 'e <= 2620') return (u32(e) * 732923) >> 20 } // pow5_bits returns ceil(log_2(5^e)), or else 1 if e==0. fn pow5_bits(e int) int { // This approximation works up to the point that the multiplication // overflows at e = 3529. If the multiplication were done in 64 bits, // it would fail at 5^4004 which is just greater than 2^9297. assert1(e >= 0, 'e >= 0') assert1(e <= 3528, 'e <= 3528') return int(((u32(e) * 1217359) >> 19) + 1) } /* 64 bit functions */ fn shift_right_128(v Uint128, shift int) u64 { // The shift value is always modulo 64. // In the current implementation of the 64-bit version // of Ryu, the shift value is always < 64. // (It is in the range [2, 59].) // Check this here in case a future change requires larger shift // values. In this case this function needs to be adjusted. assert1(shift < 64, 'shift < 64') return (v.hi << u64(64 - shift)) | (v.lo >> u32(shift)) } fn mul_shift_64(m u64, mul Uint128, shift int) u64 { hihi, hilo := bits.mul_64(m, mul.hi) lohi, _ := bits.mul_64(m, mul.lo) mut sum := Uint128{ lo: lohi + hilo hi: hihi } if sum.lo < lohi { sum.hi++ // overflow } return shift_right_128(sum, shift - 64) } fn pow5_factor_64(v_i u64) u32 { mut v := v_i for n := u32(0); true; n++ { q := v / 5 r := v % 5 if r != 0 { return n } v = q } return u32(0) } fn multiple_of_power_of_five_64(v u64, p u32) bool { return pow5_factor_64(v) >= p } fn multiple_of_power_of_two_64(v u64, p u32) bool { return u32(bits.trailing_zeros_64(v)) >= p } // dec_digits return the number of decimal digit of an u64 pub fn dec_digits(n u64) int { if n <= 9_999_999_999 { // 1-10 if n <= 99_999 { // 5 if n <= 99 { // 2 if n <= 9 { // 1 return 1 } else { return 2 } } else { if n <= 999 { // 3 return 3 } else { if n <= 9999 { // 4 return 4 } else { return 5 } } } } else { if n <= 9_999_999 { // 7 if n <= 999_999 { // 6 return 6 } else { return 7 } } else { if n <= 99_999_999 { // 8 return 8 } else { if n <= 999_999_999 { // 9 return 9 } return 10 } } } } else { if n <= 999_999_999_999_999 { // 5 if n <= 999_999_999_999 { // 2 if n <= 99_999_999_999 { // 1 return 11 } else { return 12 } } else { if n <= 9_999_999_999_999 { // 3 return 13 } else { if n <= 99_999_999_999_999 { // 4 return 14 } else { return 15 } } } } else { if n <= 99_999_999_999_999_999 { // 7 if n <= 9_999_999_999_999_999 { // 6 return 16 } else { return 17 } } else { if n <= 999_999_999_999_999_999 { // 8 return 18 } else { if n <= 9_999_999_999_999_999_999 { // 9 return 19 } return 20 } } } } }